

Q11.	Solve the following linear problem by dynamic programming technique. $\begin{aligned} & \max _{x_{1}, x_{2} \geq 0} 8 x_{1}+7 x_{2} \\ & \text { subject to } \\ & 2 x_{1}+x_{2} \leq 8 \\ & 5 x_{1}+2 x_{2} \leq 15 \end{aligned}$ OR Solve the following non-linear problem by dynamic programming technique. $\begin{array}{cc} & \max _{x_{1}, x_{2}, x_{3} \geq 0} x_{1}^{2} x_{2} x_{3} \\ \text { subject to } & x_{1}+2 x_{2}+x_{3}=15 \\ & x_{1}, x_{2}, x_{3} \geq 0 \end{array}$	CO4
SECTION C Q12a. and Q12b. both have internal choices; Each question carries 10 marks		
Q12.	a. Compute Karush-Kuhn-Tucker (KKT) optimality conditions for the following convex programming problem. $\begin{gathered} \min _{x_{1}, x_{2} \geq 0}-4 x_{1}+x_{1}^{2}-2 x_{1} x_{2}+2 x_{2}^{2} \\ \text { subject to } \quad 2 x_{1}+x_{2} \leq 6 \\ x_{1}-4 x_{2} \leq 0 . \\ \text { OR } \end{gathered}$ Using Lagrange multiplier method solve the following constrained optimization problem. $\begin{aligned} & \min _{x_{1}, x_{2} \geq 0} x_{1}^{2}-x_{1} x_{2}+x_{2}^{2} \\ & \text { subject to } x_{1}^{2}+x_{2}^{2}=1 \end{aligned}$ b. Use Fibonacci search method to minimize the function $f(x)=-\frac{1}{(x-1)^{2}}(\ln x-$ $\left.2 \frac{x-1}{x+1}\right)$ in the range (1.5,4.5]. Reduce the size of the interval minimum $\frac{1}{5}$ of the original. OR Apply Steepest descent method to minimize the function $f\left(x_{1}, x_{2}\right)=4 x_{1}^{2}-$ $4 x_{1} x_{2}+2 x_{2}^{2}$ with initial point $x_{0}=(2,3)$. Perform iterations until $\|\nabla f\|<\binom{1}{1}$.	CO 3

