Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, 2021

Course: Robotics Control System Program: M. Tech ARE engineering Course Code: ECEG 7006 Instructions: Semester: II Time 03 hrs Max. Marks: 100

1. Attempt all questions serially as per question paper.

2. Answer should be neat and clean.

S. No.	Attempt all questions.	Marks	СО
Q 1	What are the limitations of linearization of a system. What is the need of nonlinear system analysis?	5	CO1
Q2	The characteristics equation of a system in differential form is		
	$\ddot{x} - (K+2)\dot{x} + (2K+10)x = 0$	5	CO3
	Find the values of K for which the system is (i) stable (ii) limited stable and (iii) unstable.		
Q3.	What do you understand by many to one mapping with respect to fuzzy logic. What are the typical membership function associated with fuzzy logic.	5	CO2
Q4	What are the objectives in the design of control system. Differentiate between regulation and tracking of a system?	5	CO1
Q5	What do you understand by feedback control system. Explain each term consisting in the design of feedback control system?	5	CO1
Q6	What are the actuator nonlinearities?	5	CO1
	Section B – 50 Marks		
Q7	Explain the block diagram of computed torque control of robot manipulator with diagram?	10	CO4
Q 8	How fuzzy control is differentiated from PID controller. Give an example of fuzzy control used in robot manipulator.	10	CO4
Q 9	Consider the three robot are connected in the following manner shown in fig 1.	10	CO2

	$\overbrace{fig1}{} 1$				
Q 10.	(a) State and prove Lyapunov stability theorem. Explain Lyapunov direct method? (b) For the system $\dot{x}_1 = x_2$ $\dot{x}_2 = -x_1 - bx_2$ Based on the Lyapunov technique comment on the stability.	10	CO3		
Q11	Obtain the transfer functions for the following systems with state-space models Available as given below also comment on controllability and observability. $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u; y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} u$	10	CO2		
SECTION C, 20 Marks					
Q12 (a)	Given a dynamical system described by $\dot{x} = ax + b \cos(x) + u$ where $a, b \in \mathbb{R}$ are known constants (assume $a = 2, b = 5$). Design a robust controller to achieve tracking control $x \rightarrow x_d$	10	CO4		
Q12 (b)	Explain the generalized robot manipulator equation and their properties. Obtain the derivation for position control of robot manipulator?	10			