

	betar Fig. 2: Ladder diagram for Q 6		
	SECTION B (50 marks)		
Q 7	For the task of driving a screw of pitch p at a desired angular velocity ω_{d} using a screwdriver, determine the natural and artificial constraints. The schematic of the task is shown below in Fig. 3. Fig. 3: A screw driver driving a screw.	10	CO 2
Q 8	Find out the DH parameters for the cylindrical robot shown below in Fig. 4. Fig. 4: A cylindrical robot	10	CO 2

Q 9	Perform the inverse kinematics of a 2-DoF planar robot having two revolute joints. If the length of each link L_{1} and L_{2} is 1 ft . and the position and orientation of the end effector is given by matrix ${ }^{0} \mathrm{~T}_{\mathrm{H}}$, calculate the values of joint variables: θ_{1} and θ_{2}. Check for multiple solutions, if any. ${ }_{H}^{0} T=\left[\begin{array}{cccc} -0.2924 & -0.9563 & 0 & 0.6978 \\ 0.9563 & -0.2924 & 0 & 0.8172 \\ 0 & 0 & 1 & 0.0000 \\ 0 & 0 & 0 & 1 \end{array}\right]$ The transformation matrices for the two joints are as follows. ${ }_{1}^{0} T=\left[\begin{array}{cccr} C_{1} & -S_{1} & 0 & L_{1} C_{1} \\ S_{1} & C_{1} & 0 & L_{1} S_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right] ;{ }_{2}^{1} T=\left[\begin{array}{cccr} C_{2} & -S_{2} & 0 & L_{2} C_{2} \\ S_{2} & C_{2} & 0 & L_{2} S_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right]$	10	CO2
Q 10	It is desired to have the first joint of a six-axis robot to move from the initial position, $\theta_{0}=15^{\circ}$, to a final position, $\theta_{\mathrm{f}}=75^{\circ}$, in 3 seconds using a cubic polynomial. Determine the trajectory.	10	CO2
Q 11	For a cylindrical robot having joint parameters: θ_{1}, d_{2} and d_{3}, the final transformation matrix is given as follows. Find the Jacobian matrix. ${ }_{3}^{0} T=\left[\begin{array}{cccc} C_{1} & 0 & -S_{1} & -d_{3} S_{1} \\ S_{1} & 0 & C_{1} & d_{3} C_{1} \\ 0 & -1 & 0 & d_{2} \\ 0 & 0 & 0 & 1 \end{array}\right]$	10	CO 2
	SECTION-C (20 marks)		
Q 12	Draw relay ladder diagram of an electro-hydraulic system using a double acting cylinder in which a piston rod extends and retracts between limit switches LS1 and LS2. The motion is started by pressing a switch. A $4 / 3$ double solenoid hydraulic valve is used as in Fig. 5. Use two relays with suitable contacts. Write down the logic equations also.	20	CO5

Fig. 5: Electro-hydraulic system for Q 12
If a shaper tool is attached to the piston for making a linear groove on a workpiece as shown in Fig. 6 then find out the natural and artificial constraints for the process.

Fig. 6: Planning force-control task for the electro-hydraulic system of Fig. 5

Design a nonlinear controller based on the computed torque control law for the above system.

