Name:							
Enrolment No:		UNIVERSITY WITH A PURPOSE					
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES						
	End Semester I	Examination, Jun 2021					
	Course: Green ChemistrySemester: IIProgram: M. Sc. ChemistryTime: 03 hrs.						
0	Program:M. Sc. ChemistryTime: 03 hrs.Course Code:CHEM 8002Max. Marks:		1				
1 Fa	SEC' ch Question will carry 5 Marks	$\mathbf{TION} - \mathbf{A} \qquad 6 \mathbf{x} 5 = 30 \mathbf{Marks}$					
	truction: Complete the statement / o	choose the correct answer(s)					
Q 1	A: Green chemistry aims to?		CO1				
	a) Design chemical products and pro	ocess that maximize profits					
	b) Design safer chemical products and processes that reduce or eliminate						
	the use and generation of hazardous	substances					
	c) Design chemical products and processes that work most efficiently						
	d) Utilize non-renewable energy						
	B: Which of the following are among the 12 Principles of Green						
	Chemistry?						
	a) Design commercially viable produced	ucts					
	b) Use only new solvents						
	c) Use catalysts, not stoichiometric r	reagents					
	d) Re-use waste						
Q 2	A: Dr. Paul Anastas & Dr. John Wa	rner created 10 Principles of Green	CO1				
	Chemistry to reduce or eliminate the	use and generation of hazardous					
	substances?						
	a) True						
	b) False						
	B: Green chemistry is more expensive	ve than traditional chemistry?					
	a) True						
	b) False						

Q 3	A: We must use feedstock derived from annually renewable resources or		CO1		
	from				
	a) Chemicals		b) Organic compounds		
	c) Abundant wa	e) Abundant waste d) Plants			
	B: The principles of green chemistry include eliminatingtreatments				
	a) Costly	ł	b) Harmful		
	c) Hard		d) Easy		
Q 4	Choose correct l	CO1			
	A: RX/AlCl ₃		D: HNO ₃ +H ₂ SO ₄		
	B: nano silver with polymer b		ese E: Zeolites		
	C: aq. HCl/ Δ T		F: NaOH/ΔT		
Q 5	A. Green chemi	stry improves _	of chemical manufacturers.	CO2	
	a) Competitiveness b) Easiness of production				
	c) Services	d) Chemicals			
	B. The green synthesis methods should have				
	a) Low efficience	су	b) High harmful products		
	c) Low energy requirements d) Low atom efficiency				
Q 6	Select the correct Green solvents from the below list.				
	A: Toluene	D: Ether	G: ethyl lactate J: Acetone		
	B: Hexane	E: Water	H: cyclo pentyl methylether		
	C: Glycerol	F: Lactone	I : 2-methyltetrahydrofuran		
			CTION - B 10 x 5 = 50 Marks	5	
	ch question will c struction: Write s	•			
Q 1	A: Describe goals of Green Chemistry.		CO1		
	B: How Green Chemistry advances towards a sustainable future.				
Q 2	Illustrate the differences and similarities Green Chemistry with			CO1	
	Environmental Chemistry.				
Q 3	A: How Green Chemistry is interdisciplinary in nature?			CO1	
	B: Describe Environmental Laws related to Green chemistry.				

Q 4	Explain with minimum two national and one international industrial case	CO2					
	study on wealth from waste (Green Chemistry point of view).						
Q 5	A: Describe new emerging Green Technologies.						
	B: Why one can focus on next generation Catalyst Design methods?						
	Section - C1 x 20 = 20 Marks1. Each Question carries 20 Marks.2. Instruction: Write long answer.						
2.1115							
Q 1	A: Depict selective method for the oxidation of 5-hydroxymethylfurfural	CO1					
	(HMF) by using hydrogen peroxide (H ₂ O ₂) and activated-carbon-supported						
	ruthenium (Ru/AC) as the catalyst.						
	B: Discuss the solvent free synthesis methods with examples.	CO2					
	OR						
	A: Explain any THREE methods of greener approaches for nanoparticle	CO1					
	synthesis.						
	B: Discuss about the microwave-assisted synthesis method of Green	CO2					
	chemicals with example.						