Name:	
-------	--

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

Online End Semester Examination, June 2021

Course: Photochemistry and Pericyclic reactions

Program: M. Sc. Chemistry

Course Code: CHEM7021P

Semester: II Time 03 hrs.

Max. Marks: 100

SECTION A

Each question will carry 5 marks
 Instruction: Complete the statement

S. No.	Question	Marks	CO
Q 1	In a spectrophotometric cell of 2.0 cm path length the solution shows an absorbance value 1.0. If molar absorptivity constant is, 20000 L/mol/cm. find the concentration of substance in the solution in mol/L.	5	CO1
Q 2	A substance absorbs 2.0×10^{16} quanta or radiations per second and 0.002 mole of it reacts in 1200 seconds. What is the quantum yield or the reaction (N = 6.02×10^{23})?	5	CO1
Q 3	Calculate the energy of photon corresponding to wavelength 4800 angstrom.	5	CO1
Q 4	a. For triplet state, the spin multiplicity isb. One Einstein energy is equivalent to hv.	2.5 2.5	CO1
Q 5	 a. The quantum efficiency of a photochemical reaction is defined as b phenomenon represents radiation less transitions. 	2.5 2.5	CO1
Q 6	Name the approaches that have been made to explain pericyclic reaction.	5	CO3
	SECTION B		

2. Instruction: Write short / brief notes

Q 1	Write all the possible products for the following reaction: 2 hv	10	CO2
Q 2	Write the products and steps involved in the reaction	10	CO2

the role of quencher in photochemical reactions. 10 chi reaction. Write the product for the following 10 arg reactions	CO2
chi reaction. Write the product for the following 10	CO2
10	
ng reactions	
10	CO2
SECTION-C	
ot with example. OR	
angement.	
lowing reaction:	CO3
	OR bital schematic combinations for π orbitals of 1,3-