Name:		5	
Enrolme	ent No:		
Course (Code: PHYS1020	Semester: I	100
Total pa	nme:BTech : APE GAS, Chemical, ADE, Mechatronics, Mechanical, FSE, Civil ages: 2	Max. Marks: Time: 03 hrs.	100
• T	All questions are compulsory (Q12 has internal choice) Use blank paper as rough work to solve the questions in section-A and write only the inswers, no upload)	correct option	s (type
	SECTION A		
S. No.		Marks	CO
Q1.	A laser beam propagates through an optical fiber of 2.2 km long through TIR. At entry side 450 mW power is fed. The output power is measured to be 150 mW. L coefficient is (a) 4.15 dB/km, (b) 2.17 dB/km, (c) 3.28 dB/km, (d) 1.55 dB/km		CO1
Q2.	The area of a hysteresis loop drawn between B and H is 200m ² . Each unit space al the vertical axis represent 0.005 Wb/m ² and each unit space along the horizontal a represents 10A/m. Determine the hysteresis loss per cycle per m ³ (a) 100 Joule (b) 5 Joule (c) 10 Joule (d) 20 Joule		CO2
Q3.	A dielectric material has very electrical resistance of $\rho = 5 \times 10^5$ ohm-m. If dielect permittivity $\varepsilon = 3.7\varepsilon_0$ then how much time the dielectric takes to reduce its charg 1/e time the initial value? (a) 16.4 µs, (b) 6.55 µs, (c) 16.4 ns, (d) 6.55 ns		CO2
Q4.	Find the expectation value of position of a particle having wavefunction $\Psi = ax$, between, $x = 0$ and 1, $\Psi = 0$ elsewhere. (a) a^2 (b) $\frac{a^2}{2}$ (c) $\frac{a^2}{4}$ (d) $\frac{a^2}{8}$	5	CO3
Q5.	If (3 2 6) are the Miller indices of a plane, the intercepts made by the plane on three crystallographic axes are(a) (2a, 3b, c)(b) (a, b, c)(c) (a, 2b, 3c)(d) (3a, 3b, 2c)	the 5	CO4
Q6.	If the applied potential in a X-ray tube is 50 kV, then maximum wavelength of produced X-rays is (a) 0.2 nm (b) 2 nm (c) 0.2 Å (d) 2 Å	the 5	CO4

Q7.	Calculate atomic packing fraction (APF) of BCC crystal.	10	CO4
Q8.	Show that A/B ratio of Einstein co-efficients can be expressed as		
	$\frac{A}{B} = \frac{8\pi h v^3}{c^3}$ the symbols have their usual significance	10	CO1
Q9.	Prove that an electromagnetic wave propagating in free space follows \vec{k} , \vec{E} and \vec{B} as mutually perpendicular to each other (you may consider, \vec{E} along X, \vec{B} along Y and propagation along Z directions).	10	CO2
Q10.	Discuss working of a Solar Cell with diagram. Calculate fill factor from the following data points, MPP = 200 mW, open circuit voltage $V_{oc} = 2.5$ volt, short circuit current $I_{sc} = 150$ mA.	5+5	CO3
Q11.	Write down the characteristics of a laser beam. Discuss 3-level and 4-level laser working with level diagram.	2+4+4	CO1
Q12.	SECTION-C (a) Discuss photoelectric effect with diagram and various characteristic graphs.	10	СОЗ
Q12.	SECTION-C	10 2+4+4	CO3 CO3
Q12.	SECTION-C (a) Discuss photoelectric effect with diagram and various characteristic graphs. (b) Write down the main characteristics of Schrodinger wavefunction. Sketch normalized wavefunction and probability function between 0 to L of a particle		
Q12.	SECTION-C (a) Discuss photoelectric effect with diagram and various characteristic graphs. (b) Write down the main characteristics of Schrodinger wavefunction. Sketch normalized wavefunction and probability function between 0 to L of a particle in a box problem.		
Q12.	SECTION-C (a) Discuss photoelectric effect with diagram and various characteristic graphs. (b) Write down the main characteristics of Schrodinger wavefunction. Sketch normalized wavefunction and probability function between 0 to L of a particle in a box problem. OR (a) Deduce the expression for Compton shift, in the form	2+4+4	CO3

 $\varepsilon_0 = 8.854 \times 10^{-12} F/m$, mass of proton = 1.6726 x 10⁻²⁷ Kg