Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End-Sem Examination, May-June. 2021 Course: Basic Electrical and Electronics Engineering

Program: B.Tech. SoE FSE, Civil, CE-RP, ADE, Mecha, Mech, APE Gas Course Code: ECEG 1004 Semester: II Time 03 hrs. Max. Marks: 100

Instructions:

- 1. Attempt Section A by typing in your answers in the relevant text box.
- 2. Attempt section B and Section C on A4 size blank sheets. Use graph paper wherever necessary.
- 3. Answer should be neat and clean. Draw a free hand sketch for circuits/tables/schematics wherever
 - required.

S. No.	SECTION A [Type the answer] 30 Marks	Marks	СО
Q 1	Explain the concept of charge carriers in an extrinsic semiconductor.	5	C01
Q 2	Identify at least 2 types of diodes. Also state their applications.	5	C01
Q 3	Which transistor biasing configuration is used for designing amplifiers? Justify your answer.	5	CO1
Q 4	Why NAND and NOR gates are generally termed as universal gates?	5	CO2
Q 5	Explain the significance of superposition theorem for circuit analysis.	5	CO2
Q 6	Explain the resonance condition in AC electrical circuits.	5	CO2
	SECTION B [Scan and upload] 50 Marks		
Q 7	 A. For a series RL circuit draw the obtain the effective impedance and draw the phasor diagram for the same. B. A 230 V, 50 Hz sinusoidal supply is connected across a (i) resistance of 25 Ω, (ii) inductance of 0.5 H, and (iii) capacitance of 100 µH. Determine the impedance and voltage across each element. 	4+6	CO3
Q 8	 A. Design a complete circuit schematic for a full-wave bridge rectifier that gives a DC output of 52 V, 100 Hz for an AC input of 230 V, 50 Hz. B. For the voltage regulator shown below assume each Zener diode has a rating of 15V, 200 mA. Determine the regulated output voltage and I_L if R_L = 10 kΩ 	6+4	CO4
Q 9	A. State and explain the Maximum Power Transfer Theorem.B. For the circuit given below determine the Thevenin equivalent across CD (Hint: by removing the 2A current source)	3+7	CO2

