	Roll No:		
L	UPES		
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES		
	End Semester Examination, June 2021		
-	Programme: B.Tech Semester – II Community Mathematics II		
Cour	Course Name: Mathematics-IIMax. Marks: 100Course Code: MATH 1027Duration : 3 Hrs		
No. o	f page/s: 3		
	Section A		
	(Attempt all questions)	MARK	c
	If $u(x, y) = 4xy - 3x + 2$ is harmonic then corresponding analytic function $f(z) = u(x, y) + iv(x, y)$ in terms of complex variable z is given by		
1.	A. $-2iz^2 - 3z + 2 + ic$	[5]	CO2
	B. $-2x^2 + 2y^2 - 3y + c$ C. $-2z^2 + 3iz - 3z + ic$		
	D. None of these		
	The particular integral of the differential equation $\frac{d^2x}{dt^2} - 4x = \cos^2 t$ is given by		
	A. $-\frac{1}{8} - \frac{1}{16} \cos 2x$		
	B. $\frac{1}{25}\cos^2 t$		
2.		[5]	CO1
	C. $-\frac{1}{8} + \frac{1}{16}\cos 2x$		
	D. $-\frac{1}{8} - \frac{1}{16} \cos 2t$		
	The radius of convergence of the power series $\sum_{n=0}^{\infty} \left(\frac{n\sqrt{2}+i}{1+2in}\right) z^n$ is		
	The factors of convergence of the power series $\Delta n=0$ (1+2in) Δ is		
	A. 1		
3.	B. $\frac{1}{2}$	[5]	CO3
	C. 0		
	D. None of these		

4.	Find the type of singularity of function $e^{-\frac{1}{z^2}}$ A. Isolated Singularity B. Removable Singularity C. No singularity D. Essential Singularity	[5]	CO3			
5.	The residue of $f(z) = \frac{z^3}{z^2 - 1}$ at $z = \infty$ is given by A. 1 B1 C. 0 D. None of these	[5]	CO3			
6.	The solution of the partial differential equation $\left(\frac{y^2z}{x}\right)p + xzq = y^2$ is given by A. $\phi(x + y, x - z) = 0$ B. $\phi(x^2 + y^2, x - z^2) = 0$ C. $\phi(x^3 - y^3, x^2 - z^2) = 0$ D. None of these	[5]	CO4			
	SECTION B (All questions are compulsory)					
7.	Evaluate by using Cauchy integral formula $\int_c \frac{4-3z}{z(z-1)(z-2)} dz$, where <i>c</i> is the circle $ z = \frac{3}{2}$	[10]	CO1			
8.	Solve the following differential equation: $(1 - t^2)\frac{d^2z}{dt^2} + t\frac{dz}{dt} - z = t(1 - t^2)^{3/2}$	[10]	CO2			
9.	Obtain the Taylor or Laurent series which represents the function $f(z) = \frac{1}{(1+z^2)(z+2)}$ when $1 < z < 2$ and $ z > 2$.	[10]	CO3			

10.	Form a partial differential equation by eliminating the arbitrary function from the equation $\phi(x^2 + y^2 + z^2, z^2 - 2xy) = 0.$	[10]	CO4			
11.	Apply the method of calculus of residues to prove that $\int_{0}^{2\pi} \frac{\cos 2\theta}{5+4\cos\theta} d\theta = \frac{\pi}{6}$ OR Apply the method of calculus of residues to evaluate the integral $\int_{-\infty}^{\infty} \frac{\log(1+x^2)}{(1+x^2)} dx$	[10]	CO3			
	SECTION C (Q12A, Q12B are compulsory. Both have internal choice)					
12.A	A string is stretched and fastened to two points (0,0) and (l, 0) and released at rest from the initial deflection given by $f(x) = \begin{cases} \frac{2k}{l}x & \text{when } 0 < x < \frac{l}{2} \\ \frac{2k}{l}(l-x) & \text{when } \frac{l}{2} < x < l \end{cases}$ Find the deflection of the string at any time <i>t</i> . OR Find the complete solution of the following partial differential equation $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial x \partial y} = \cos 2y (\sin x + \cos x)$	[10]	CO4			
12.B	Solve the differential equation $\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$ for the condition of heat along a rod without radiation subject to the following conditions: (i) u is finite when $t \to \infty$ (ii) $u = 0$ when $x = l$ for all values of t (iii) $\frac{\partial u}{\partial x} = 0$ when $x = 0$ for all values of t (iv) $u = u_0$ when $t = 0$ for $0 < x < l$ OR Solve the partial differential equation: $\frac{\partial^2 z}{\partial x^2} - 4 \frac{\partial^2 z}{\partial y^2} = \frac{4x}{y^2} - \frac{y}{x^2}$.	[10]	CO4			