Roll No:

UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES
End Semester Examination, June 2021

Programme: B.Tech
Course Name: Mathematics-II
Course Code: MATH 1027
No. of page/s: 3

Semester - II
Max. Marks: 100
Duration : 3 Hrs

$\begin{array}{cc}\text { Section } \mathrm{A} \\ \text { (Attempt all questions) } & \\ & \text { MARKS }\end{array}$			
1.	If $u(x, y)=4 x y-3 x+2$ is harmonic then corresponding analytic function $f(z)=$ $u(x, y)+i v(x, y)$ in terms of complex variable z is given by A. $-2 i z^{2}-3 z+2+i c$ B. $-2 x^{2}+2 y^{2}-3 y+c$ C. $-2 z^{2}+3 i z-3 z+i c$ D. None of these	[5]	CO2
2.	The particular integral of the differential equation $\frac{d^{2} x}{d t^{2}}-4 x=\cos ^{2} t$ is given by A. $-\frac{1}{8}-\frac{1}{16} \cos 2 x$ B. $\frac{1}{25} \cos ^{2} t$ C. $-\frac{1}{8}+\frac{1}{16} \cos 2 x$ D. $-\frac{1}{8}-\frac{1}{16} \cos 2 t$	[5]	CO1
3.	The radius of convergence of the power series $\sum_{n=0}^{\infty}\left(\frac{n \sqrt{2}+i}{1+2 i n}\right) Z^{n}$ is A. 1 B. $\frac{1}{2}$ C. 0 D. None of these	[5]	CO 3

4.	Find the type of singularity of function $e^{-\frac{1}{z^{2}}}$ A. Isolated Singularity B. Removable Singularity C. No singularity D. Essential Singularity	[5]	CO 3
5.	The residue of $f(z)=\frac{z^{3}}{z^{2}-1}$ at $z=\infty$ is given by A. 1 B. -1 C. 0 D. None of these	[5]	CO 3
6.	The solution of the partial differential equation $\left(\frac{y^{2} z}{x}\right) p+x z q=y^{2}$ is given by A. $\phi(x+y, x-z)=0$ B. $\phi\left(x^{2}+y^{2}, x-z^{2}\right)=0$ C. $\phi\left(x^{3}-y^{3}, x^{2}-z^{2}\right)=0$ D. None of these	[5]	CO4
SECTION B (All questions are compulsory)			
7.	Evaluate by using Cauchy integral formula $\int_{c} \frac{4-3 z}{z(z-1)(z-2)} d z$, where c is the circle $\|z\|=\frac{3}{2}$	[10]	CO1
8.	Solve the following differential equation: $\left(1-t^{2}\right) \frac{d^{2} z}{d t^{2}}+t \frac{d z}{d t}-z=t\left(1-t^{2}\right)^{3 / 2}$	[10]	CO 2
9.	Obtain the Taylor or Laurent series which represents the function $f(z)=\frac{1}{\left(1+z^{2}\right)(z+2)}$ when $1<\|z\|<2$ and $\|z\|>2$.	[10]	CO 3

10.	Form a partial differential equation by eliminating the arbitrary function from the equation $\phi\left(x^{2}+y^{2}+z^{2}, z^{2}-2 x y\right)=0$.	[10]	CO4
11.	Apply the method of calculus of residues to prove that $\int_{0}^{2 \pi} \frac{\cos 2 \theta}{5+4 \cos \theta} d \theta=\frac{\pi}{6}$ OR Apply the method of calculus of residues to evaluate the integral $\int_{-\infty}^{\infty} \frac{\log \left(1+x^{2}\right)}{\left(1+x^{2}\right)} d x$	[10]	CO 3
SECTION C (Q12A, Q12B are compulsory. Both have internal choice)			
12.A	A string is stretched and fastened to two points $(0,0)$ and $(l, 0)$ and released at rest from the initial deflection given by $f(x)=\left\{\begin{array}{lll} \frac{2 k}{l} x & \text { when } & 0<x<\frac{l}{2} \\ \frac{2 k}{l}(l-x) & \text { when } & \frac{l}{2}<x<l \end{array}\right.$ Find the deflection of the string at any time t. OR Find the complete solution of the following partial differential equation $\frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial^{2} z}{\partial x \partial y}=\cos 2 y(\sin x+\cos x)$	[10]	CO4
12.B	Solve the differential equation $\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}$ for the condition of heat along a rod without radiation subject to the following conditions: (i) $\quad u$ is finite when $t \rightarrow \infty$ (ii) $\quad u=0$ when $x=l$ for all values of t (iii) $\frac{\partial u}{\partial x}=0$ when $x=0$ for all values of t (iv) $u=u_{0}$ when $t=0$ for $0<x<l$ OR Solve the partial differential equation: $\frac{\partial^{2} z}{\partial x^{2}}-4 \frac{\partial^{2} z}{\partial y^{2}}=\frac{4 x}{y^{2}}-\frac{y}{x^{2}}$.	[10]	CO4

