Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examinations (Online Mode), June 2021

Course: Differential Equations **Semester:** II **Program:** B.Sc Mathematics Time: 3 Hrs

Course Code: MATH1031 Max. Marks: 100

SECTION - A

 $6 \times 5 = 30$ Marks

- 1. Each Question will carry 5 Marks
 2. Instruction: Type the correct option(s)

2. Instruction: Type the correct option(s)			
	The function $y = ax + be^x$ where a and b are arbitrary constants is the		
Q 1	solution of the differential equation		
	A. $(x+1)y'' + xy' + y = 0$ B. $(x-1)y'' - xy' + y = 0$	CO1	
	C. $(x-1)y'' + xy' - y = 0$ D. None of these		
Q 2	For the differential equation $(3x^2y^4 + 2xy)dx + (2x^3y^3 - x^2)dy = 0$,		
	the integrating factor is given by		
	A. e^x B. $\frac{1}{x^2}$	CO1	
	C. $\frac{1}{y^2}$ D. None of these		
	The solution of the equation $\frac{dy}{dx} = e^{2x-y} + x^3 e^{-y}$ is		
Q 3	A. $e^{y} = \frac{e^{2x}}{2} + \frac{x^4}{4} + c$ B. $e^{y} = \frac{e^{2x}}{2} - \frac{x^4}{4} + c$	CO2	
	C. $e^x = \frac{e^{2y}}{2} + \frac{x^4}{4} + c$ D. None of these		
Q 4	The velocity of a chemical reaction is given by $\frac{dx}{dt} = k(a - x)$ where x is	CO4	
	the amount transferred in time t , k is a constant and a is the concentration at		
	time $t = 0$ when $x = 0$. Then the value of $x(t)$ is		
	A. $a(1 - e^{-kt})$ B. $k(1 - e^{-kt})$		
	C. $a(1 + e^{-kt})$ D. None of these		
Q 5	The solution of the exponential growth model $\frac{dN}{dt} = rN$, $N(0) = n_0$		
	where $r > 0$ is given by	CO4	
	A. $n_0 e^{rt}$ B. $n_0 e^{-rt}$		
	C. $n_0 t e^{rt}$ D. None of these		

	For the linear autonomous system $\frac{dx}{dt} = -x$, $\frac{dy}{dt} = 2x - 2y$, the equilibrium		
0.6	point $X=0$ is	CO5	
Q 6			
	A. Asymptotically stable B. Unstable		
	C. Center D. None of these		
1 .	$SECTION - B 10 \times 5 = 50 \text{ M}$	Iarks	
	ch question will carry 10 marks truction: Answer on a separate white sheet, scan and upload the solutions.		
Q 7	Write a short notes on Mathematical modeling and explain characteristics of mathematical models.	CO4	
Q 8	Solve the Cauchy-Euler equation $x^3 \frac{d^3y}{dx^3} + 3x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = x + lnx$	CO3	
Q 9	Define exact differential equation and prove that the necessary and sufficient	CO2	
	condition for the differential equation $Mdx + Ndy = 0$ to be exact is		
	$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}.$		
Q10	Check whether the equation $y(x^2y^2 + 2)dx + x(2 - 2x^2y^2)dy = 0$ is	CO2	
	exact or not and solve the equation by suitable technique.		
Q 11	Find all equilibrium solutions of the system of nonlinear differential	CO5	
	equations $\frac{dx}{dt} = 1 - xy$, $\frac{dy}{dt} = x - y^3$ and determine whether they are stable		
	or unstable.		
	$Section - C \qquad 1 \times 20 = 20 \text{ N}$	∟ Marks	
1. Each Question carries 20 Marks.			
2. Instruction: Answer on a separate white sheet, scan and upload the solutions.			
	Derive the method to find the general solution of $y'' + Py' + Qy = R$ by		
	changing the dependent variable and removing the first derivative. Using this		
	method solve the equation $y'' - \frac{2}{x}y' + \left(1 + \frac{2}{x^2}\right)y = xe^x, x > 0$		
0.10	[20 Marks]		
Q 12	(OR)		
	(a): Apply the method of variation of parameters to solve the differential	CO3	
	equation $(D^2 + 1)y = cosec x \cdot \cot x$ [10 Marks]		
	(b) Solve $x^2y'' - 2x(1+x)y' + 2(1+x)y = x^3$ by obtaining a part of the		
	complimentary function. [10 Marks]		