Name: Enrolment No:	15 UPES UNIVERSITY WITH A PURPOSE	
Course: Differential Equations Semester: II Program: B.Sc Mathematics Time: 3 Hrs Course Code: MATH1031 Max. Marks: 100		
1. Each Question will carry 5 Marks 2. Instruction: Type the correct option(s)		
Q 1	The function $y=a x+b e^{x}$ where a and b are arbitrary constants is the solution of the differential equation A. $(x+1) y^{\prime \prime}+x y^{\prime}+y=0$ B. $(x-1) y^{\prime \prime}-x y^{\prime}+y=0$ C. $(x-1) y^{\prime \prime}+x y^{\prime}-y=0$ D. None of these	CO1
Q 2	For the differential equation $\left(3 x^{2} y^{4}+2 x y\right) d x+\left(2 x^{3} y^{3}-x^{2}\right) d y=0$, the integrating factor is given by A. e^{x} B. $\frac{1}{x^{2}}$ C. $\frac{1}{y^{2}}$ D. None of these	CO1
Q 3	The solution of the equation $\frac{d y}{d x}=e^{2 x-y}+x^{3} e^{-y}$ is A. $e^{y}=\frac{e^{2 x}}{2}+\frac{x^{4}}{4}+c$ B. $e^{y}=\frac{e^{2 x}}{2}-\frac{x^{4}}{4}+c$ C. $e^{x}=\frac{e^{2 y}}{2}+\frac{x^{4}}{4}+c$ D. None of these	CO 2
Q 4	The velocity of a chemical reaction is given by $\frac{d x}{d t}=k(a-x)$ where x is the amount transferred in time t, k is a constant and a is the concentration at time $t=0$ when $x=0$. Then the value of $x(t)$ is A. $a\left(1-e^{-k t}\right)$ B. $k\left(1-e^{-k t}\right)$ C. $a\left(1+e^{-k t}\right)$ D. None of these	CO 4
Q 5	The solution of the exponential growth model $\frac{d N}{d t}=r N, N(0)=n_{0}$ where $r>0$ is given by A. $n_{0} e^{r t}$ B. $n_{0} e^{-r t}$ C. $n_{0} t e^{r t}$ D. None of these	CO 4

Q 6	For the linear autonomous system $\frac{d x}{d t}=-x, \frac{d y}{d t}=2 x-2 y$, the equilibrium point $\boldsymbol{X}=0$ is A. Asymptotically stable B. Unstable C. Center D. None of these	CO5
SECTION - B $10 \times 5 \text { = } 50 \text { Marks }$ 1. Each question will carry 10 marks 2. Instruction: Answer on a separate white sheet, scan and upload the solutions.		
Q 7	Write a short notes on Mathematical modeling and explain characteristics of mathematical models.	CO 4
Q 8	Solve the Cauchy-Euler equation $x^{3} \frac{d^{3} y}{d x^{3}}+3 x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=x+\ln x$	CO3
Q 9	Define exact differential equation and prove that the necessary and sufficient condition for the differential equation $M d x+N d y=0$ to be exact is $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$.	CO 2
Q10	Check whether the equation $y\left(x^{2} y^{2}+2\right) d x+x\left(2-2 x^{2} y^{2}\right) d y=0$ is exact or not and solve the equation by suitable technique.	CO 2
Q 1	Find all equilibrium solutions of the system of nonlinear differential equations $\frac{d x}{d t}=1-x y, \frac{d y}{d t}=x-y^{3}$ and determine whether they are stable or unstable.	CO5
1. Each Question carries 20 Marks. 2. Instruction: Answer on a separate white sheet, scan and upload the solutions.		
Q 12	Derive the method to find the general solution of $y^{\prime \prime}+P y^{\prime}+Q y=R$ by changing the dependent variable and removing the first derivative. Using this method solve the equation $y^{\prime \prime}-\frac{2}{x} y^{\prime}+\left(1+\frac{2}{x^{2}}\right) y=x e^{x}, x>0$ [20 Marks] (OR) (a): Apply the method of variation of parameters to solve the differential equation $\left(D^{2}+1\right) y=\operatorname{cosec} x \cdot \cot x$ [10 Marks] (b) Solve $x^{2} y^{\prime \prime}-2 x(1+x) y^{\prime}+2(1+x) y=x^{3}$ by obtaining a part of the complimentary function. [10 Marks]	CO3

