Name: Enrolm	ent No:					
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES						
End Semester Examination, June 2021						
Course:Real AnalysisSemesterProgram:B. Sc. (Hons.) MathsTime : 0.3			Semester: II Time : 03 hrs. Max. Marks: 1	100		
SECTION A						
	Each question carries 5 marks.					
2. Complete the statement / Select the correct answers(s).						
S. No.						
Q1	Which of the following functions is NOT true	?				
	a. The empty set is open					
	b. R is closed			CO1		
	c. $\left\{\frac{x}{x+1}: x \ge 0\right\}$ is closed					
	d. $\left\{1 - \frac{x}{x+1} : x \ge 0\right\}$ is not closed					
Q2	Let $x \in \mathbb{R}_{>0}$ be some element. Which is FALSE?					
	a. There exists a natural number n such that n					
	b. There exists a natural number n such that n			CO1		
	c. There exist natural numbers m, n such that					
02	d. There exist natural numbers m, n such that $n = mx$					
Q3	Consider the set $P = \left\{\frac{1}{m} + \frac{1}{n} : m \in \mathbb{N}, n \in \mathbb{N}\right\}$.	Then which is (are) TRUE?				
	a. <i>P</i> is not connected in real line			CO1		
	b. <i>P</i> is uncountable			CO1		
	c. <i>P</i> is not closed					
04	d. <i>P</i> is not dense in real line					
Q4	Which of the following is (are) TRUE for a point $a_1 + a_2 + \cdots + a_n$	shive term sequence $\{a_n\}$?				
	a. $\lim_{n \to \infty} \left(\frac{a_1 + a_2 + \cdots + a_n}{n} \right) = \lim_{n \to \infty} a_n$					
	b. $\lim_{n \to \infty} (a_1 \cdot a_2 \dots \cdot a_n)^{1/n} = \lim_{n \to \infty} a_n$			CO2		
	c. $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} (a_n)^{1/n}$					
	d. $\lim_{n \to \infty} (n)^{1/n} = 0$					
Q5	Which of the following is (are) TRUE?					
	a. There exists some $n_0 \in \mathbb{N}$ s. t. $\forall n \ge n_0$, $ (\cdot)$					
	b. There exists some $n_0 \in \mathbb{N}$ s.t. $\forall n \ge n_0$, $ ($			CO2		
	c. There exists some $n_0 \in \mathbb{N}$ s.t. $(-1)^n \in N_{\epsilon}$					
Q6	d. There exists a unique $n_0 \in \mathbb{N}$ s.t. $(-1)^n \in$ Which of the following is (are) TRUE?	$n_{\epsilon}(n_0)$ for infinitely many n		COL		
V 0	which of the following is (alc) INUL:			CO3		

	a. $\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ is absolutely convergent		
	Vit		
	b. $\sum_{n=0}^{\infty} \frac{(-1)^n}{n^2}$ is conditionally convergent c. $\sum_{n=0}^{\infty} \frac{1}{\sqrt{n}}$ is coditionally convergent		
	d. $\sum_{n=0}^{\infty} \frac{(-1)^n}{n^{3/2}}$ is absolutely convergent		
	SECTION B		
1.	Each question carries 10 marks.		
2. Q7	2. There is an internal choice in Q11. Prove by giving counterexample that infinite intersection of open sets is not necessarily open. C		
ν,			
Q8	Find the limit inferior and limit superior of the following sequence:		
	$a_n = \left(1 - \frac{1}{n}\right) \sin\left(\frac{n\pi}{3}\right)$, $n \ge 1$		
Q9	Consider the sequence $\{a_n\}_{n \ge 1} = \left\{\frac{n!}{n^n}\right\}$. Use Cauchy's theorems on limits to prove that $\lim_{n \to \infty} a_n = 0$.		
Q10	Let $\{x_n\}$ be a sequence recursively defined as follows:		
	$x_1 = 2, \ x_{n+1} = \frac{x_n}{2} + \frac{5}{x_n} \text{ for } n \ge 1$		
	Prove that $\{x_n\}$ converges and find the limit of the sequence.		
Q11	Discuss the convergence or divergence of the following series:		
X			
	$\sum_{n=0}^{\infty} \frac{(n!)^2}{(2n)!}$		
	$OR^{n=0}$		
	Discuss the convergence or divergence of the following series:		
	$\sum_{n=0}^{\infty} \frac{(-1)^n n^2 + n}{n^3 + 1}$		
	n=0 SECTION-C		
1.	Q12 carries (10+10) marks.		
	There is an internal choice in Q12.		
Q 12	Consider the infinite series:		
	$\sum_{i=1}^{\infty} 1$		
	$\sum_{n=2}^{\infty} \frac{1}{n \log n}$		
	a. Determine whether it is convergent or divergent.		
	b. Use the result of part (a) to determine the convergence of series		
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
	$\sum_{n=2}^{\infty} \frac{1}{n[\log(n+1) - \log n]}$	CO3	
	OR		
	Suppose $\{x_n\}$ is a real sequence such that $x_n = \frac{1}{n^{\alpha}}$ for some $\alpha \in \mathbb{R}$ . Prove the following:		
	a. If $\sum_{n=1}^{\infty}  x_n ^p < \infty$ for some $1  then \sum_{n=1}^{\infty}  x_n ^q < \infty for any q > p.$		
	b. If $\sum_{n=1}^{\infty}  x_n ^p < \infty$ for some $1 < q < p < \infty$ then $\sum_{n=1}^{\infty}  x_n ^q = \infty$ .		
<u> </u>			