Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES ONLINE END SEMESTER EXAMINATION, JUNE 2021

Course: Solar Thermal Technologies. Program: M Tech Renewable Energy Engineering Course Code: EPEC 7016 Semester: II Time 03 hrs. Max. Marks: 100

SECTION A

1. Each Quest	ion will carry 5 Ma	arks
2 Instruction	• Write short answ	ers

2. Instr	uction: Write short answers.		
S. No.		СО	
Q1	Differentiate between solar irradiance and solar insolation.		
Q2	List some parameters due to which the performance of solar flat plate collectors is		
	affected.		
Q3	Write the properties required for the phase change material used in solar thermal storage	CO3	
	system.		
Q4	Calculate the concentration ratio, the aperture, the height and the surface area of the	CO4	
	collector of compound parabolic collector 1 m long with acceptance angle of 20°. The		
	absorber surface of the collector is flat and has a width of 10 cm.		
Q5	In central tower type solar collector the heliostats:	CO5	
	(a) have 1-axis tracking facility (b) have 2-axes tracking facility		
	(c) are fixed (d) are adjusted seasonally		
Q6	What is the typical cooking time of a paraboloid dish cooker?		
	(a) 2–3 hours (b) 20–30 minutes		
	(c) 20–30 seconds (d) 6–12 hours		
	SECTION B		
	question will carry 10 marks uction: Write brief notes		
2. Instr Q7	Discuss the working of the instruments used for measuring solar radiation and sunshine.	CO1	
	Calculate the angle made by beam radiation with the normal to a flat plate collector on		
	May 1 st at 0900 h (local apparent time). The collector is located in New Delhi (28°35'N,		
	77°12'E). It is tilted at an angle of 36° with the horizontal and is pointing due south.		

	Outline the k	ey steps for te	esting Solar Fl	at Plate Collec	ctor and list se	ome collectors	CO2
	available com	mercially for w	ater heating.				
Q9	A cylindrical	hot water stora	ige tank 1.7 m	in diameter an	d 2.1 m high i	s made from a	CO3
	steel plate ($\rho = 7800 \text{ kg/m}^3$, Cp = 0.46 kJ/kg-K) 6 mm thick. Apart from the mass of steel						
	required for making the surface an additional 200 kg of steel is required in the form of						
	angles, etc. for strengthening the tank, which is insulated all round with glass wool						
	insulation 20 cm thick ($k = 0.4$ W/m-K). The initial temperature of the water in the tank						
		is 50°C at 0700 hrs in the morning on a particular day and the variation of \mathbf{q}_{u} and \mathbf{T}_{a} upto					
	1200 hrs show	n below					
	Time	7-8	8-9	9-10	10-11	11-12	
	q _u (kJ/h)	18660	37496	54890	60070	69890	
	T _a (°C)	17.8	21.9	25.1	27.4	29.1	
	 Size of absorber plate = 2.4 m × 1.4m Absorber plate thickness = 0.18 mm Thermal conductivity of plate material = 360 W/m-K Number of tubes attached below abs. plate = 15 Fluid flow rate = 50 kg/h Water inlet temperature = 40°C Specific heat of fluid at 50°C = 4174 J/kg-K 						
	 Thermal co Number of Fluid flow Water inle Specific her 	tubes attached rate = 50 kg/h t temperature = eat of fluid at 5	l below abs. pla = 40°C 0°C = 4174 J/k	ate = 15 ag-K			
	 Thermal co Number of Fluid flow Water inle Specific het Tube to flu Outer dian 	tubes attached rate = 50 kg/h t temperature = eat of fluid at 5 hid heat transfe neter of tubes =	l below abs. pla = 40°C 0°C = 4174 J/k r coefficient = = 15 mm	ate = 15 ag-K			
	 Thermal co Number of Fluid flow Water inle Specific her Tube to flu Outer dian Inner diam Overall los Average the 	tubes attached rate = 50 kg/h t temperature = eat of fluid at 5 hid heat transfe heter of tubes = sector of tubes = sector of tubes = sector of tubes =	below abs. pla $= 40^{\circ}C$ $0^{\circ}C = 4174 \text{ J/k}$ r coefficient = = 15 mm = 13.8 mm f the collector = esive = negligi	ate = 15 xg-K 200 W/m ² -K = 5 W/m ² -K			
	 Thermal co Number of Fluid flow Water inle Specific her Tube to flu Outer dian Inner diam Overall los Average th Length of 	f tubes attached rate = 50 kg/h t temperature = eat of fluid at 5 hid heat transfe heter of tubes = sector of tubes = ss coefficient o hickness of adh controller = 2.5	below abs. pla $= 40^{\circ}C$ $0^{\circ}C = 4174 \text{ J/k}$ r coefficient = = 15 mm = 13.8 mm f the collector = esive = negligi 5 m	ate = 15 xg-K 200 W/m ² -K = 5 W/m ² -K			
	 Thermal co Number of Fluid flow Water inle Specific het Tube to flu Outer dian Inner diam Overall los Average th Length of co 	tubes attached rate = 50 kg/h t temperature = eat of fluid at 5 hid heat transfe heter of tubes = sector of tubes = sector of tubes = sector of tubes =	l below abs. pla = 40° C 0° C = 4174 J/k r coefficient = = 15 mm = 13.8 mm f the collector = esive = negligi 5 m m	ate = 15 xg-K 200 W/m ² -K = 5 W/m ² -K			
	 Thermal co Number of Fluid flow Water inle Specific her Tube to flu Outer dian Inner diam Overall los Average the Length of co Ambient tee Beam radia 	f tubes attached rate = 50 kg/h t temperature = eat of fluid at 5 hid heat transfe heter of tubes = s coefficient o hickness of adh controller = 2.3 emperature = 2 ation on horizo	l below abs. pla = 40° C 0° C = 4174 J/k r coefficient = = 15 mm = 13.8 mm f the collector = esive = negligi 5 m m 4° C ontal surface = 0	ate = 15 kg-K 200 W/m ² -K = 5 W/m ² -K ble 550 W/m ²			
	 Thermal co Number of Fluid flow Water inle Specific het Tube to flu Outer diant Inner diant Overall los Average th Length of co Midth of co Beam radiation Diffuse radiation 	f tubes attached rate = 50 kg/h t temperature = eat of fluid at 5 nid heat transfe neter of tubes = est coefficient of nickness of adh controller = 2.3 emperature = 2 ation on horizo diation (uniform s for beam, of	l below abs. pla = 40° C 0° C = 4174 J/k r coefficient = = 15 mm = 13.8 mm f the collector = esive = negligi 5 m m 4° C	ate = 15 xg-K 200 W/m ² -K = 5 W/m ² -K ble 650 W/m ² in the sky) = 1		.98 and 0.005	

		Transmissivity-absorptivity product for diffuse radiation falling on the collector= 0.79	
		lculate:	
	(i)	the collector heat removal factor, F_R	
		water outlet temperature, T_{fo}	
) instantaneous efficiency of collector, η_i	
Q11	i.	Explain the process of power generation using solar chimney.	CO5
	ii.	It is proposed to set up a solar chimney power plant in Rajasthan with a chimney	
		300m high. Calculate the maximum possible conversion efficiency obtainable with	
		chimney, also estimate the efficiency of the plant as a whole and the daily electrical	
		output in a typical summer month (in kWh), if the solar collection area of the	
		greenhouse is $50,000 \text{ m}^2$.	
		Section C	
2.	Instr	a Question carries 20 Marks. Fuction: Write long answer. mpt any one question	
Q12	i.	Describe the spectral power distribution of solar radiation and the solar radiation	
		geometry in detail.	
	ii.	Calculate the angle of incidence of beam radiation on a plane surface, tilted by 45°	
		from horizontal plane and pointing 30° west of south located at Mumbai at 1:30 PM	
		(IST) on 15 th November. The longitude and latitude of Mumbai are 72° 49'E and	
		18° 54' N respectively. The standard longitude for IST is 81° 44' E.	
		OR	
	i.	Explain how the monthly average of terrestrial global radiation is related to sunshine	C01
		hours.	
	ii.	For Coimbatore (11.0183° N, 76.9725° E, and elevation of 411 m above sea level),	
		estimate the value of average daily global radiation on horizontal surface during the	
		month of March. The average sunshine hours per day for the month of March may	
		he assumed as 9.5 h	
		be assumed as 9.5 h.	
		be assumed as 9.5 h.	
		be assumed as 9.5 h.	