Name: Enrol			
LIITOII			
	UNIVERSITY OF PETROLEUM AND ENERGY STUDI	ES	
Online End Semester Examination, May 2021Course: Enhanced Oil Recovery TechniquesSemesterProgram: M.Tech (Petroleum Engg)Time: 03Course Code: PEAU 7009Max. MarSECTION A			
	h Question will carry 5 Marks ruction: All questions are compulsory. Assume if any data missing.		
S. No.	Question	СО	
Q 1	Explain the terms vertical sweep efficiency, mobility and mobility ratio.		
Q 2	Describe the forward and backward In-situ combustion process.		
Q 3	Describe the CO ₂ flooding mechanism for enhanced oil recovery.		
Q 4	Enumerate microbial enhanced oil recovery techniques.		
Q 5	Write single and multiple contact miscible processes for EOR.		
Q 6	Deduce overall recovery factor, displacement and areal sweep efficiencies for an enhanced oil recovery system.		
	SECTION B	I	
	h question will carry 10 marks ruction: All questions are compulsory. Assume if any data missing.		
Q 7	Draw a complete flowchart of various enhanced oil recovery technique them briefly.	s. Explain CO3	
Q 8	What are the factors involved in selection of flooding patterns? Briefly e flooding patterns.	explain the CO1	
Q 9	Derive the Buckley - Leverette equation for immiscible displacement.	CO4	
Q 10	What is ASP flooding? Explain the displacement mechanism of alkaline Also give the screening criteria of alkaline flooding.	e flooding. CO3	
Q 11	Discuss oil recovery by wet combustion. Also differentiate betwee stimulation and steam flooding.	een steam CO4	
	OR		

	h Question carries 20 ruction: All questions	SECTION C Marks. are compulsory. Assume if any da	ata missing.	
Q 12	(a) An oil reservoir is being considered for further development by initiating a water flooding project. The oil-water relative permeability data indicate that the residual oil saturation is 35%. It is projected that the initial gas saturation at the start of the flood is approximately 10%. Calculate the anticipated reduction in residual oil, Δ Sor, due to the presence of the initial gas at the start of the flood.			
	Coefficients	Initial Gas Saturation (S_{gi})	Reduction in Sor	
	a1	0.030517211	0.026936065	
	a2	0.4764700	0.41062853	
	a3	0.69469046	0.29560322	
	a4	-1.8994762	-1.4478797	
	a5	$-4.1603083 \times 10^{-4}$	$-3.0564771 \times 10^{-4}$	
	 necessary assumption (a) Calculate the frage Basic data of the Basic data of the Area of the patter Thickness of the Permeability of Average porosity Average oil satu Average residua Intial oil FVF, B Mobility ratio, M Average sweep of Water injection of Basic Bas	OR ctional recovery from the following of reservoir:- rn A= 300x300 m Payzone ,H= 10m each layer, K = 310 md,187 md, 432 y $\phi = 0.20$ ration S _o = 0.65 l oil saturation S _{or} = 0.25 oi = 1.12 = 1.32 efficiency Es= 0.8 rate, q _w = 50 m ³ /day ion,S _{gi} = 0.14 space fill up at first oil production in	data using stiles methods: md,187 md & 64md ncrease)= 0.6	CO2
	(b) Derive the ed heterogeneous reser	quations of fractional recovery a voir.	and water-oil-ratio for a	