UNIVERSITY OF PETROLEUM AND ENERGY STUDIES
 End Semester Examination, June 2021

Programme Name: B.Sc Physics, Chemistry, Geology
Course Name : Calculus
Course Code: MATH 1033G

Semester : II
Time : 03 hrs
Max. Marks : 100

Section A (All questions are compulsory.)			
1.	Consider the following function. $f(x)=\left\{\begin{aligned} 2^{1 / x}, & x \neq 0 \\ 0, & x=0 \end{aligned}\right.$ Write if the function $f(x)$ is continuous at $x=0$.	[5]	CO1
2.	If $u=\log \frac{x^{2}+y^{2}}{x+y}$, the write the values of $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}$	[5]	CO 2
3.	Write the sum of the intercepts of the tangent to $\sqrt{x}+\sqrt{y}=\sqrt{a}$ upon the co-ordinate axes.	[5]	$\mathrm{CO3}$
4.	Write equation of an asymptote of the curve $x^{3}+y^{3}=3 a x y$	[5]	CO4
5.	Consider the function $x^{3}+y^{3}-3 x-12 y+10$. Write if the function has minimum or the maximum value at $(-1,-2)$. If the function has optimum write the optimal value at $(-1,-2)$.	[5]	CO5
6.	Write the limiting value of $\lim _{x \rightarrow 0} \frac{1}{x}-\cot x$	[5]	CO6
SECTION B (Q1-Q5 are compulsory and Q5 has an internal choice.)			
1.	If $y=\frac{b+c x}{a+2 b x+c x^{2}}$ show that $y_{n}=(-1)^{n} n!\left(\frac{c}{a+2 b x+c x^{2}}\right)^{\frac{n+1}{2}} \times\left\{\cos (n+1) \tan ^{-1} \frac{\sqrt{a c-b^{2}}}{b+c x}\right\}$	[10]	CO1
2.	If $r^{2}=x^{2}+y^{2}+z^{2}$, show that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) r=\frac{2}{r}$	[10]	CO2

Name:
Enrollment No:

3.	Find the radius of curvature at any point of the curve $x=a(\theta+\cos \theta), y=a(1-\cos \theta)$.	$[10]$	$\mathbf{C O 3}$
4.	Determine the position and nature of the double points on the curve $y(y-6)=$ $x^{2}(x-2)^{3}-9$	$[10]$	$\mathbf{C O 4}$
	Trace the curve $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ Trace the curve $r=a(1+\cos \theta) \quad$ OR	$[10]$	$\mathbf{C O 5}$
$(\mathbf{Q 1}$ is compulsory and has an internal choice. $)$			

1A	Use Cauchy's mean value theorem to evaluate $\lim _{x \rightarrow 1}\left[\frac{\cos \frac{1}{2} \pi x}{\log \frac{1}{x}}\right]$ OR Use Lagrange's mean value theorem to prove that $1+x<e^{x}<1+x e^{x}$	[10]	
1B	Apply Maclaurin's theorem to obtain the expansion of $\sec x$ OR Evaluate $\lim _{x \rightarrow 0} \frac{(1+x)^{1 / x}-e}{x}$	[10]	

