ent No:	
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES	
SECTION A	
	CO
A system of 100 kg mass undergoes a process in which its specific entropy increases from 0.3 kJ/kg- K to 0.4 kJ/kg-K. At the same time, the entropy of the surroundings decreases from 80 kJ/K to 75 kJ/K. Comments on the possibility, reversibility and irreversibility of the system.	CO2
Define Extensive and Intensive properties with examples?	C01
What is the effect of temperature on thermal conductivity of metals, non-metals and gases?	C01
Identify extensive or intensive properties	
(a) Density (b) Molar Volume (c) Internal Energy (d) Number of moles (e) Average molecular weight	CO1
Identify open system or a closed system	
(a) Human Being (b) Bicycle tire (c) A refrigerator (d) Planet earth	CO1
Explain velocity and thermal boundary layer formation for different range of Prandtl number?	CO1
SECTION B	
	CO4
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, May 2021 mme Name: M.Tech-ES Semester : II Name : Thermodynamics and Heat Transfer systems Time : 03 hrs Code : EPEC7028 Marks Instruction: Short Answer Type (Explain in not more than two or three lines) SECTION A Each Question will carry 5 Marks Instruction: Short Answer Type (Explain in not more than two or three lines) Questions A system of 100 kg mass undergoes a process in which its specific entropy increases from 0.3 kJ/kg- K to 0.4 kJ/kg-K. At the same time, the entropy of the surroundings decreases from 80 kJ/K to 75 kJ/K. Comments on the possibility, reversibility and irreversibility of the system. Define Extensive and Intensive properties with examples? What is the effect of temperature on thermal conductivity of metals, non-metals and gases? Identify extensive or intensive properties (a) Density (b) Molar Volume (c) Internal Energy (d) Number of moles (e) Average molecular weight (a) Human Being (b) Bicycle tire (c) A refrigerator (d) Planet earth Explain velocity and thermal boundary layer formation for different range of Prandtl number?

	$\int_{5.08 \text{ cm}}^{1} \text{Gas} - \sqrt{\sqrt{-1}}$ $k = 3.25 \text{ kN/m}$	
Q 2	A compressor, operating at steady-state, increases the pressure of an air stream from 1 bar to 10 bar while losing 4.2 kW of heat to the surroundings. At the compressor inlet, the air is at 25 °C and has a velocity of 14 m/s. At the compressor outlet, the air is at 350°C and has a velocity of 2.4 m/s. If the compressor inlet has a cross-sectional area of 500 cm ² and the air behaves as an ideal gas, determine the power requirement of the compressor in kW.	CO3
Q.3	 Water of kinematic viscosity (9) equal to 9.29x10⁻⁷ m²/s is flowing steadily over a smooth flat plate at zero angle of incidence, with a velocity of 1.524 m/s. The length of the plate is 0.3048 m. Calculate: (a) The thickness of the boundary layer at 0.1524 m from the leading edge. (b) Boundary layer rate of growth at 0.1524 m from the leading edge. (c) Total drag coefficient on the plate. 	CO2
Q.4	Consider a large plane wall of thickness $L = 0.05m$. The wall surface at x=0 is insulated, while the surface at x = L is maintained at a temperature of 30^{0} C. The thermal conductivity of the wall is k = 30 W/mK, and heat is generated in the wall at a rate of $8x10^{6}$ W/m ³ . Assuming steady one-dimensional heat transfer, (a) express the differential equation and the boundary condition for heat conduction through the wall, (b) Obtain a relation for the variation of temperature in the wall by solving the differential equation.	CO3
Q.5	Complete the blank cells in the following table of properties of steam. In the last column describe the condition of steam as compressed liquid, saturated mixture, superheated vapor, or insufficient information; and, if applicable, give the quality. <i>P</i> , kPa 7, °C v, m ³ /kg u, kJ/kg and quality (if applicable) <u>200 30 </u> <u>270.3 130 <u>400 1.5493 </u> <u>300 0.500 </u> <u>3084 </u> </u>	CO2
1	SECTION C	
1. 2.	Each Question carries 20 Marks. Instruction: Write long answer.	
Q 1	The effluent from an air compressor is cooled by contacting with water in a heat exchanger. The operating parameters for this system are given in the diagram, below.	CO4

