Name: Enrolment No:			
Course: Supersonic and Hypersonic Flows Semester: II Program: M.Tech CFD Time $\mathbf{0 3}$ hrs. Course Code: ASEG 7034P Max. Marks: $\mathbf{1 0 0}$ Instructions: Required graph and tables are provided at the end of question paper.			
SECTION A			
S. No.		Marks	CO
Q1.	Discuss various properties of hypersonic flow.	5	CO1
Q2.	List the parameters which determines the strength of a shock wave.	5	CO2
Q3.	"Stagnation pressure remains constant across an expansion fan" Whether the above sentence is true or false. Give reason for your answer.	5	$\mathrm{CO3}$
Q4.	Discuss about small perturbation theory and its advantages.	5	CO4
Q5.	Discuss the limitations of linearized velocity potential equation.	5	CO4
Q6.	Define critical Mach number. What is the value of critical Mach number for a flat plate at zero angle of attack?	5	$\mathrm{CO5}$
SECTION B			
Q7.	Discuss on the severity of aerothermodynamics effects on a hypersonic vehicles and discuss about its control methods.	10	CO1
Q8	Consider the flow over a 22.2° half-angle wedge. If the Mach number, pressure and temperature upstream of the shock wave are $2.5,1 \mathrm{~atm}$, and 300 K respectively, then calculate the wave angle and corresponding flow properties downstream of shock wave.	10	CO2
Q9	Consider a flow with pressure and temperature of 1 atm and 288 K . A Pitot tube is inserted into this flow and measures a pressure of 1.555 atm . What is the velocity of the flow?	10	$\mathrm{CO2}$
Q10	Consider the supersonic flow over an expansion corner. The deflection angle $\theta=$ 23.38^{0}. If the flow upstream of the corner is given by $\mathrm{M}_{1}=2, \mathrm{P}_{1}=0.7 \mathrm{~atm}$ and $\mathrm{T}_{1}=$ 350 K , then calculate $\mathrm{M}_{2}, \mathrm{P}_{2}, \mathrm{~T}_{2}, \rho_{2}, \mathrm{P}_{0,2}$, and $\mathrm{T}_{0,2}$ downstream of the corner. Also, obtain the angles the forward and rearward Mach lines make with respect to the upstream direction.	10	$\mathrm{CO3}$
Q11	Derive velocity potential equation for compressible flow.	10	CO4
SECTION-C			
Q 12	Consider a diamond-wedge airfoil with a half-angle $\varepsilon=10^{\circ}$. The airfoil is at an angle of attack $\alpha=15^{\circ}$ to a Mach 3 freestream. Calculate the lift and wave-drag coefficients for the airfoil.	20	$\mathrm{CO5}$

Prandtl-Meyer Function and Mach Angle

M	v	μ	M	v	μ
$0.1000+01$	0.0000	$0.9000+02$	$0.1600+01$	$0.1486+02$	0.5868+02
$0.1020+01$	$0.1257+00$	$0.7864+02$	$0.1620+01$	$0.1545+02$	$0.5812+02$
$0.1040+01$	$0.3510+00$	$0.7406+02$	$0.1640+01$	$0.1604+02$	$0.3757+02$
$0.1060+01$	$0.6767+00$	$0.7063+02$	$0.1660+01$	$0.163+02$	$0.3704+02$
$0.1080+01$	$0.9650+00$	$0.6781+02$	$0.1680+01$	$0.1722+02$	$0.565+02$
$0.1100+01$	$0.1336+01$	$0.6538+02$	$0.1700+01$	$0.1781+02$	$0.5003+02$
$0.1120+01$	$0.1735+01$	$0.6323+02$	$0.1720+01$	$0.1840+02$	$0.3555+02$
$0.1140+01$	$0.2160+01$	$0.6131+02$	$0.1740+01$	$0.1898+02$	$0.3508+02$
$0.1160+01$	$0.2007+01$	$0.5955+02$	$0.1760+01$	0.195602	$0.3462+02$
$0.1180+01$	$0.3074+01$	$0.5794+02$	$0.1780+01$	$0.2015+02$	$0.3418+02$
$0.1200+01$	$0.3558+01$	$0.5644+02$	$0.1800+01$	$0.2073+02$	$0.3375+02$
$0.1220+01$	$0.4057+01$	$0.5505+02$	$0.1820+01$	$0.2130+02$	$0.3333+02$
$0.1240+01$	$0.4569+01$	$0.5375+02$	$0.1840+01$	$0.2188+02$	$0.3292+02$
$0.1260+01$	$0.5093+01$	$0.5253+02$	$0.1860+01$	$0.2245+02$	$0.5252+02$
$0.1280+01$	$0.5627+01$	$0.5138+02$	$0.1880+01$	$0.2702+02$	$0.3213+02$
$0.1300+01$	$0.6170+01$	$0.5028+02$	$0.1900+01$	$0.2759+02$	$0.3176+02$
$0.1320+01$	$0.6721+01$	$0.4925+02$	$0.1920+01$	$0.2415+02$	$0.3139+02$
$0.1340+01$	$0.7779+01$	$0.4827+02$	$0.1940+01$	$0.2471+02$	$03103+02$
$0.1360+01$	$0.7844+01$	$0.4733+02$	$0.1960+01$	$0.2527+02$	$0.3068+02$
$0.1380+01$	$0.8413+01$	$0.4644+02$	$0.1980+01$	$0.2583+02$	$0.3033+02$
$0.1400+01$	$0.8957+01$	$0.4558+02$	$0.2000+01$	$0.2688+02$	$0.3000+02$
$0.1420+01$	0.9565+01	$0.4477+02$	$0.2050+01$	$0.2775+02$	$0.2920+02$
$0.1440+01$	$0.1015+02$	$0.4398+02$	$0.2100+01$	$0.2910+02$	$0.2844+02$
$0.1460+01$	$0.1073+02$	$0.4323+02$	$0.2150+01$	$0.3043+02$	$0.2772+02$
$0.1480+01$	$0.1132+02$	$0.4251+02$	$0.2200+01$	$0.3173+02$	$0.2704+02$
$0.1500+01$	$0.1191+02$	$0.4181+02$	$0.2250+01$	$0.3702+02$	$0.2639+02$
$0.1520+01$	$0.1249+02$	$0.4114+02$	$0.2300+01$	$0.3428+02$	$02577+02$
$0.1540+01$	$0.1309+02$	$0.4049+02$	$0.2350+01$	$0.3553+02$	$02518+02$
$0.1560+01$	$0.1368+02$	$0.3987+02$	$0.2400+01$	$0.3675+02$	$0.2462+02$
$0.1580+01$	$0.1427+02$	$0.3927+02$	$0.2450+01$	$0.3795+02$	$0.2409+02$

M	v	μ	M	ν	μ
$0.2500+01$	$0.3912+02$	$0.2858+02$	$0.5000+011$	$0.7692+02$	$0.1154+02$
$0.2550+01$	$0.4008+02$	$0.2309+02$	$0.5100+01$	$0.7784+02$	$0.1131+02$
$0.2600+01$	$0.4141+02$	$0.2262+02$	$0.5200+01$	$0.7873+02$	$0.1109+02$
$0.2650+01$	$0.4250+02$	$0.2217+02$	$0.5300+01$	$0.7960+02$	$0.1088+02$
$0.2700+01$	$0.4362+02$	$0.2174+02$	$0.5400+011$	$0.8043+02$	$0.1007+02$
$0.2750+01$	$0.4469+02$	$0.2132+02$	$0.5500+01$	$0.8124+02$	$0.1048+02$
$0.2800+01$	$0.4575+02$	$0.2092+02$	$0.5600+011$	$0.8200+02$	$0.1029+02$
$0.2850+01$	$0.4678+02$	$0.2054+02$	$0.5700+01$	$0.8280+02$	$0.1010+02$
$0.2900+01$	$0.4779+02$	$0.2017+02$	$0.5800+011$	$0.8354+02$	$0.9928+01$
$0.2950+01$	$0.4878+02$	$0.1981+02$	$0.5900+01$	$0.8426+02$	$0.9758+01$
$0.3000+01$	$0.4976+02$	$0.1947+02$	$060000+01$	$0.8456+02$	$0.9594+01$
$0.3050+01$	$0.5071+02$	$0.1914+02$	$06100+01$	$0.8563+02$	$0.9435+01$
$0.3100+01$	$0.5165+02$	$0.1882+02$	$0.6200+011$	$0.8699+02$	$0.9282+01$
$0.3150+01$	$0.5257+02$	$0.1551+02$	$0.6300+01$	$0.869+02$	$0.9133+01$
$0.3200+01$	$0.5347+0.2$	$0.1821+02$	$06400+01$	$0.8756+02$	$0.8589+01$
$0.3250+01$	$0.5435+02$	$0.1792+02$	$0.6500+01$	$0.8817+02$	$0.8850+01$
$0.3300+01$	$0.5522+02$	$0.1764+02$	$0.6600+011$	$0.8876+02$	$0.8715+01$
$0.3350+01$	$0.5607+02$	$0.1737+02$	$0.6700+011$	$0.8933+02$	$08584+01$
$0.3400+01$	$0.5691+02$	$0.1710+02$	$0.6800+01$	$0.8989+02$	$0.8457+01$
$0.3450+01$	$0.5773+02$	$0.1685+02$	$0.6900+01$	$0.9044+02$	$0.8333+01$
$0.3500+01$	$0.5850+02$	$0.1660+02$	$0.7000+011$	$0.9097+02$	$0.8213+01$
$0.3550+01$	$0.5932+02$	0.1636+02	$0.7100+011$	$0.9149+02$	$0.8097+01$
$0.3600+01$	$0.6009+02$	$0.1613+02$	$0.7200+01$	$0.9200+02$	$0.7984+01$
$0.3650+01$	$0.005+02$	$0.1590+02$	$0.7300+01$	$0.9249+02$	$0.7873+01$
$0.3700+01$	$0.6160+02$	$0.1568+02$	$0.7400+01$	$0.9297+02$	$0.7766+01$
$0.3750+01$	$0.6239+02$	$0.1547+02$	$0.7500+01$	$0.9344+02$	$0.7662+01$
$0.3800+01$	$0.6104+02$	$0.1526+02$	$0.7600+011$	$0.9790+02$	$0.7561+01$
$0.3850+01$	$0.6375+02$	$0.1505+02$	$0.7700+01$	$0.9434+02$	$0.7462+01$
$0.3900+01$	$0.6444+02$	$0.1486+02$	$0.7800+011$	$0.9478+02$	$0.7366+01$
$0.3950+01$	$0.6512+02$	$0.1466+02$	$0.7900+01$	$0.9521+02$	$0.7272+01$
$0.4000+01$	$0.6578+02$	$0.1448+02$	$08000+01$	$0.9562+02$	$0.7181+01$
$0.4050+01$	$0.6644+02$	$0.1429+02$	$0.9000+011$	$0.9972+02$	$0.6379+01$
$0.4100+01$	$0.6708+02$	$0.1412+02$	$0.1000+02$	$0.1023+03$	$0.5739+01$
$0.41 .50+01$	$0.6771+02$	$0.1394+02$	$0.1100+02$	$0.1048+03$	$0.5216+01$
$0.4200+01$	$0.6835+02$	$0.1377+02$	$0.1200+02$	$0.109+03$	$0.4780+01$
$0.4250+01$	$0.6894+02$	$0.1361+02$	$0.1300+02$	$0.1087+03$	$0.4412+01$
$0.4300+01$	$0.6954+02$	$0.1345+02$	$0.1400+02$	$0.1102+03$	$0.4096+01$
$0.4350+01$	$0.7013+02$	$0.1329+02$	$0.1500+02$	$0.1115+08$	$0.3823+01$
$0.4400+01$	$0.7071+02$	$0.1314+02$	$0.1600+00$	$0.1127+03$	$0.3583+01$
$0.4450+01$	$0.7127+02$	$0.1299+02$	$0.1700+02$	$0.1137+03$	$0.3372+01$
$0.4500+01$	$0.7183+02$	$0.1284+02$	$0.1800+02$	$0.1146+03$	$0.3185+01$
$0.4590+01$	$0.7238+02$	$0.1270+02$	$0.1900+00$	$0.1155+03$	$0.3017+01$
$0.4600+01$	$0.7792+02$	$0.1256+02$	$0.2000+00$	$0.1162+03$	$0.2866+01$
$0.4650+01$	$0.7345+02$	$0.1242+02$	$0.2200+02$	$0.1175+03$	$0.2005+01$
$0.4700+01$	$0.7397+02$	$0.1228+02$	$0.2400+02$	$0.1186+03$	$0.2888+01$
$0.4750+01$	$0.7448+02$	$0.1215+02$	$0.2600+00$	$0.1195+03$	$0.2204+01$
$0.4800+01$	$0.7499+02$	$0.1202+02$	$0.2800+02$	$0.1202+08$	$0.2047+01$
$0.4850+01$	$0.7548+02$	$0.1190+02$	$03000+02$	$0.1209+03$	$0.1910+01$
$0.4900+01$	$0.7597+02$	$0.1178+02$	$03200+02$	$0.1215+08$	$0.1791+01$
$0.4950+01$	$0.7645+02$	0.1166+02	$03400+02$	$0.1200+03$	$0.1685+01$

$\theta-\beta-M$ Relationship

