Name: Enrolment No:					
SECTION A					
S. No.	Answer all the Questions (30 Marks)			Marks	CO
Q 1	Explain the difference between diffusion flames and Premixed flames, describe the practical examples? What is the influence of Turbulance on the flame structure?			5	CO1
Q 2	How does particulates form in combustion system. What are the methods used to reduce particulate emission from combustion system?			5	CO2
Q 3	Explain about bluff body flame stabilization, Why it is a challenge in Micro Combustion Systems. What will happen to the height in the turbulent ranges?			5	CO
Q 4	Explain about Electronegativity, and its significance in selection of fuels and oxidizers with the examples. Define Hess's Law. Describe the use of Hess's Law for analysis of chemical reactions.			5	CO1
Q5.	Explain the significance of D^{2} Law with its mathematical expressions? How it is used in Droplet combustion? Explain the validity for solid fuel combustion			5	CO4
Q6.	What do you mean by flashback and blow-off? How can this be related to the burning velocity?			5	$\mathrm{CO3}$
SECTION B					
Answer all the Questions (50 Marks)					

Q 7	A small, low emission, stationary gas turbine engine operates ta full load 3950 kW at an equivalence ratio of 0.286 with an air flow rate of $15.9 \mathrm{Kg} / \mathrm{s}$. The equivalent composition of the fuel is $\mathrm{C}_{1.16} \mathrm{H}_{4.32}$. Determine the fuel mass flow rete and the operating air fuel ratio of the engine?	10	CO 2
Q 8	Benzene gas $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ at $25^{\circ} \mathrm{C}$ is burned during a steady-flow combustion process with 95 percent theoretical air that enters the combustion chamber at $25^{\circ} \mathrm{C}$. All the hydrogen in the fuel burns to $\mathrm{H}_{2} \mathrm{O}$, but part of the carbon burns to CO . If the products leave at 1000 K , determine (a) the mole fraction of the CO in the products and (b) the heat transfer from the combustion chamber during this process	10	CO4
Q 9	A gaseous fuel having a volumetric analysis of $65 \% \mathrm{CH} 4,25 \% \mathrm{C} 2 \mathrm{H} 6,5 \% \mathrm{CO}$, and 5% N2 is burned with 30% excess air. Determine a) mass AF ratio, (b). mass of CO2 produced (c). mass of water formed (d). mass of products formed?	10	CO1
Q 10	Determine the detonation pressure for a gaseous mixture of H_{2} and O_{2} for a particular mixture ratio, when this mixture at initial pressure of 0.2 MPa and 300 K is increased its density by three times due to formation of detonation wave. Assume the ideal gas law when specific heat ratio is 1.25 . Assume that the product contains only gaseous $\mathrm{H}_{2} \mathrm{O}$ molecules.	10	CO 3

