Name: Enrolment No:	15 UPES UNIVERSITY WITH A PURPOSE	
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, June 2021		
Course: Physical Chemistry II		Semester: II
Program: B. Sc. (Hons.) Chemistry		Time 03 hrs .
Course Code: CHEM1006		Max. Marks: 100

SECTION A

1. Each question will carry 5 marks
2. Instruction: Complete the statement/ Select the correct answer

S. No.	Question	Marks	CO
Q 1	Define extensive and intensive properties. Give two examples of each.	5	CO1
Q 2	One mole of an ideal gas at $25^{\circ} \mathrm{C}$ is allowed to expand reversibly at constant temperature from a volume of 10 litres to 20 litres. Calculate the work done by the gas. $\left(\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{Mol}^{-1}\right)$	5	CO 2
Q 3	For the reaction $\mathrm{H}_{2} \mathrm{~F}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) ; \Delta \mathrm{E}=-14.2 \mathrm{kcal} / \mathrm{mole}$ at $25^{\circ} \mathrm{C}$. Calculate $\Delta \mathrm{H}$ for the reaction. $\left(\mathrm{R}=1.98 \mathrm{CalK}^{-1} \mathrm{~mol}^{-1}\right)$	5	CO1
Q 4	Suppose that a reaction has $\Delta \mathrm{H}=-24 \mathrm{~kJ}$ and $\Delta \mathrm{S}=-60 \mathrm{~J} / \mathrm{K}$. At what temperature will it change from spontaneous to non-spontaneous? (a) 500 K (b) 401 K (c) 300 K (d) 40.1 K	5	CO 2
Q 5	Choose the correct criterion of spontaneity in terms of properties of the system alone (a) $(\mathrm{dS})_{\mathrm{H}, \mathrm{P}}<0$ (b) $(\mathrm{dS})_{\mathrm{U}, \mathrm{v}}>0$ (c) $(\mathrm{dS})_{\mathrm{T}, \mathrm{P}}<0$ (d) $(\mathrm{dS})_{\mathrm{T}, \mathrm{v}}>0$	5	CO 2
Q 6	For an ideal gas which obeys $\mathrm{PV}=\mathrm{RT}$, what is the value of $\left(\frac{\partial S}{\partial V}\right)_{T}$?	5	CO 2

SECTION B

1. Each question will carry $\mathbf{1 0}$ marks
2. Instruction: Write short / brief notes

Q 1	Describe the Joule-Thomson Effect and prove that it is an iso-enthalpic process.	10	CO2
Q 2	Define heat of formation. The standard heats of formation of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l}), \mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are $-277.0,-393.5$ and $-285.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. Calculate the standard heat change for the reaction $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)+3 \mathrm{O}_{2}(l) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(l)$	10	CO1
Q 3	Define the second law of thermodynamics. What do you mean by spontaneous process? Calculate the entropy change when 2 moles of an ideal gas are allowed to expand isothermally at 293 K from a pressure of 10 atmosphere to a pressure of 2 atmosphere. $\left(\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$	10	CO2
Q 4	Discuss the free energy and entropy of mixing (i.e. $\Delta_{\text {mix }} G$ and $\Delta_{\text {mix }} S$) of ideal gases using chemical potential concept.	10	CO 3
Q 5	2.0 mole of $\mathrm{He}, 4.0$ moles of Ne and 5.0 moles of Ar are mixed at the same temperature (298 K) and pressure (1 bar). Assuming ideal gas behaviors, calculate the value of $\Delta \mathrm{G}_{\text {mix }}$. (Given: $\mathrm{R}=8.314 \mathrm{~J} / \mathrm{K} / \mathrm{mol}$) OR Derive the thermodynamic expression of boiling point elevation of a solution.	10	CO3
SECTION-C			
1. Each question carries 20 marks 2. Instruction: Write long answers			
Q 1	(a) Derive Gibbs-Helmholtz equation. OR Derive the thermodynamic expression of freezing point depression of solution. (b) State the Plank's third law of thermodynamics. Calculate the third law entropy of a substance at 300 K using the following data: (i) Heat capacity of solid from 0 K to normal melting point $200 \mathrm{~K}, \mathrm{C}_{\mathrm{p}}(\mathrm{s})=$ $0.1 \mathrm{~T} / \mathrm{K} / \mathrm{mol}$ (ii) Enthalpy of fusion $=7 \mathrm{~kJ} / \mathrm{mol}$ (iii) Heat capacity of liquid from 200 K to normal boiling point $300 \mathrm{~K}, \mathrm{C}_{\mathrm{p}}(1)$ $=0.2 \mathrm{~T} \mathrm{~J} / \mathrm{K} / \mathrm{mol}$ (iv) Enthalpy of vaporization $=20 \mathrm{~kJ} / \mathrm{mol}$ (v) Heat capacity of gas from 300 K to $350 \mathrm{~K}, \mathrm{C}_{\mathrm{p}}(\mathrm{g})=0.3 \mathrm{~T} \mathrm{~J} / \mathrm{K} / \mathrm{mol}$ OR Prove that the chemical potential of a pure substance in two phases in equilibrium are equal.	10 10	CO3

