Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2021

Course: Molecular Biology and Genetics

Semester: II

Program: MSc. Microbiology Time : 03 hrs.
Course Code: HSMB 7014 Max. Marks: 100

Instructions:

- 1. Kindly take the examination from Laptop + Mobile or Mobile only with recommended OS & Browser (mentioned in Exam manual)
- 2. Section A- Type the Answers
- 3. **Section B, Section C and Section D** Scan and Upload question type.
- 4. Use Plain paper (A4 sheet) & Black Gel Pen.
- 5. Kindly note that to avoid connectivity glitches while uploading your answer sheet, please try to finish earlier than the end time to ensure uploading. To Scan and Upload answers please make sure that when picture is being taken:
- ✓ ensure that shadows do not fall on the paper
- ✓ ensure that the camera is held stably above the answer sheet in parallel to it
- ✓ ensure the frame of the picture includes the answer sheet and no surroundings
- ✓ ensure sufficient lighting in the room
- ✓ If your answer is more than 1 page for particular question, please scan all the pages of answer and then press the upload button
- ✓ Same questions should be opened on laptop for which you are uploading scanned answer sheet from mobile

Example: If you are scanning answer sheet for Que No. 1 of Section B, C and D from Mobile, then Que No. 1 should be visible on your laptop screen.

SECTION A				
S. No.	MCQs or Fill in the blanks (1.5 marks each)	30 Marks	СО	
1	DNA polymerase involved in mitochondrial replication is called	1.5	CO1	
2	Klenow fragment has the ability to do nick translation. True/False	1.5	CO1	

			1
3	Both replication and translation require investment of energy in the form of ATP. True/False	1.5	CO2
4	In eukaryotes,is the polymerase responsible for leading strand synthesis.	1.5	CO1
5	In eukaryotes,is the polymerase responsible for lagging strand synthesis.	1.5	CO1
6	is responsible for sealing nicks in the DNA via formation of an enzyme-AMP complex as an intermediate.	1.5	CO1
7	RF-C and PCNA of eukaryotes are analogous to	1.5	CO2
8	is responsible for reversal of UV induced damage	1.5	CO6
9	is a DNA alkylating agent.		
	 a. Nitrous acid b. Actinomycin D c. Nitrosourea d. All of the above 	1.5	CO6
10	Oxidative deamination of cytosine leads to formation of	1.5	CO6
11	Oxidative deamination of DNA can happen in presence of mutagen such as	1.5	CO6
12	Regulatory RNA that is perfectly complementary to mRNA is calledand binding of it to RNA leads to	1.5	CO3
13	Regulatory RNA that is partially complementary to mRNA is calledand binding of it to RNA leads to	1.5	CO3
14	RISC stands for	1.5	CO3
15	Prokaryotic promoters le upstream of transcription start site while eukaryotic ones can lie both upstream and downstream. True/False	1.5	CO3
16	Name at least two chromatin modifying enzymes.	1.5	CO1
17	Enhancers can lie both upstream and downstream of transcription start site. True/False	1.5	CO2
18	Give an example of a ribozyme.	1.5	CO4
19	Look at the pedigree, write what sort of inheritance is reflected. Heterozygous female without disease Affected male (silent carrier)	1.5	CO5

20	Transcription in eukaryotes happens indirection and in prokation happens indirection.	aryotes 1.5	CO3
	SECTION B the word limit 20 marks 4 questions 5 marks ea	ch	
Q	Short Answer Type Question (5 marks each) Scan and Upload 4 questions 5 m each	arks 20 Marks	СО
1	Explain what is the inheritance pattern. What is unusual? BC BC BC BC BC BC BC BC BC B	5	CO5
2	Draw histone octamer and explain how DNA is wrapped around it. Also, explain chromatin organization crisply.	in 5	CO1
3	Explain what is capping? Where does it happen? What is the purpose?	5	CO3
4	Explain with suitable illustration initiation of translation in prokaryotes.	5	CO4
	SECTION C 30 marks	, , , , , , , , , , , , , , , , , , ,	
Q	Two case studies 15 marks each subsections	30 Marks	CO
1	1. In a cancerous cell, the ends of chromosome are maintained well. Ther	e is no	
	shortening of ends observed while in normal somatic cells, length of the progressively decreases with successive cell division. Give reas explanation for the following- i. What are these ends called? 1 Mark ii. What is causing this phenomenon in cancer and somatic cells. Expreferably with a suitable illustration. 5 Marks iii. Who discovered it and in which organism? 2Marks iv. What is the composition of ends of chromosome? 3Marks v. This phenomenon of end shortening is implicated in ageing too. Context explain/envisage what happens in ageing, what are the consequences can you reverse it assuming you are a molecular biologist? 4 Marks	Explain 15 an you 3? How	CO3

2	How does horizontal transfer happen in bacteria. Explain with suitable illustrations and text. (3+7) OR Give an account of initiation of transcription (assembly of TFs) in eukaryotes with suitable diagram/cartoon.	10	CO4
1	Explain promoter organization in eukaryotes. Also, write how many types of RNA polymerases exist in eukaryotes? What does each one do? (6+1+3)	10	CO3
Q	Long Answer type Questions Scan and Upload (10 marks each) word limit (500 words)	20 Marks	СО
	SECTION- D 20 marks		
	 that wrong amino acid is incorporated into protein. i. Which is possibly defective in first cell line? 1 Mark ii. Why is ATP needed in the process? 1 Mark iii. What are the roles of this enzyme in translation? You can use appropriate cartoons, equations to support your answer. 5Marks iv. How many substrates does this enzyme have? 3 Marks v. What is defective in enzyme of second cell line? 2 Marks vi. How can you possibly rescue the cell, given that you can add components in the cell culture easily? 2 Marks vii. How many such enzymes are present in the cell and why? 1 Mark 		