Name:

Enrolment No:

UNIVERSITY WITH A PURPOSE

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May-June 2021

Course: Mathematics Program: B.Tech Food Technology Course Code: MATH1038

Semester: II Time : 03 hrs. Max. Marks: 100

Instructions:

	SECTION A (Type your answers)		
S. No.	MCQs or Fill in the blanks (1.5 marks each)	30 Marks	CO
1	If Lagrange's mean value theorem is applicable on $f(x) = x^2$ in (1,5), then the value of <i>c</i> is (a) 3 (b) 4 (c) 5 (d) None of these	1.5	CO1
2	If n^{th} term of the series does not tend to zero as $n \to \infty$, then series is (a) Necessarily convergent (b) May or may not be convergent (c) Never convergent (d) None of these	1.5	CO1
3	The series $\sum \frac{1}{n^2}$ is (a) Convergent (b) Divergent (c) Oscillatory (d) None of these	1.5	CO3
4	If $z = f(x + ct) + \emptyset(x - ct)$, then (a) $\frac{\partial^2 z}{dt^2} = c^2 \left(\frac{\partial^2 z}{dx^2}\right)$ (b) $\frac{\partial^2 z}{dt^2} = c \left(\frac{\partial^2 z}{dx^2}\right)$ (c) $\frac{\partial^2 z}{dt^2} = c^4 \left(\frac{\partial^2 z}{dx^2}\right)$ (d) None of these	1.5	CO4
5	If $w = ln\sqrt{x^2 + y^2}$, the value of $\frac{\partial w}{\partial y}$ is (a) $\frac{x}{x^2+y^2}$ (b) $\frac{y}{x^2+y^2}$ (c) $\frac{x^2}{x^2+y^2}$ (d) None of these	1.5	CO4
6	(a) $\frac{x}{x^2+y^2}$ (b) $\frac{y}{x^2+y^2}$ (c) $\frac{x^2}{x^2+y^2}$ (d) None of these The rank of the matrix $\begin{bmatrix} -4 & 1 & -1 \\ -1 & -1 & -1 \\ 7 & -3 & 1 \end{bmatrix}$ is (a) 1 (b) 2 (c) 3 (d) None of these	1.5	CO5
7	(a) 1 (b) 2 (c) 3 (d) None of these The value of $\Gamma(n)\Gamma(1-n)$ is (a) $\frac{\pi}{sinn\pi}$ (b) $\frac{\pi}{cosn\pi}$ (c) $\frac{\pi^2}{sinn\pi}$ (d) all the above	1.5	CO1
8	If $f(x)$ is odd function, then which of the Euler's coefficients is present in its Fourier series expansion? (a) a_0 (b) a_n (c) b_n (d) all of these	1.5	CO3
9	(a) a_0 (b) a_n (c) b_n (d) all of these For the function $f(x) = x^2$, the value of the Euler's coefficient b_n is (a) zero (b) finite (c) infinite (d) none of these	1.5	C01
10	The value of $\beta(\frac{9}{2}, \frac{7}{2})$ is (a) $\frac{\pi}{2048}$ (b) $\frac{5\pi}{2048}$ (c) $\frac{7\pi}{2048}$ (d) None of these	1.5	CO1

$\frac{x}{x+1} = \frac{2}{3} + \frac{x+2}{5}$ is singular, the value of x is onsistent $m \ge n$ non-homogeneous system of linear equations $AX = B$, if rank of number of unknowns, then the system possesses number of solutions. system of equations $x + 2y + 3z = 0$, $2x + 3y + z = 0$, $4x + 5y + 4z = 0$ has number of solutions. $= 2x^{2}i - 3yzj + xz^{2}k \text{ and } f = 2z - x^{3}y, \text{ the value of } \overline{A} \cdot \nabla f \text{ at the point}$ 1,1) is $= (bx + 4y^{2}z)i + (x^{3} \sin z - 3y)j - (e^{x} + 4\cos x^{2}y)k \text{ is solenoidal, then the}$ of b is Hivergence of $(2x^{2}zi - xy^{2}zj + 3yz^{2}k)$ at the point (1,1,1) is	1.5 1.5 1.5 1.5 1.5 1.5 1.5	CO5 CO5 CO5 CO4 CO4
onsistent $m \ge n$ non-homogeneous system of linear equations $AX = B$, if rank of number of unknowns, then the system possesses number of solutions. system of equations $x + 2y + 3z = 0$, $2x + 3y + z = 0$, $4x + 5y + 4z = 0$ has number of solutions. $= 2x^2i - 3yzj + xz^2k$ and $f = 2z - x^3y$, the value of $\overline{A} \cdot \nabla f$ at the point 1, 1) is $= (bx + 4y^2z)i + (x^3 \sin z - 3y)j - (e^x + 4\cos x^2y)k$ is solenoidal, then the cof b is	1.5 1.5 1.5	CO5 CO4
number of unknowns, then the system possesses number of solutions. system of equations $x + 2y + 3z = 0$, $2x + 3y + z = 0$, $4x + 5y + 4z = 0$ has number of solutions. $= 2x^2i - 3yzj + xz^2k$ and $f = 2z - x^3y$, the value of \overline{A} . ∇f at the point 1, 1) is $= (bx + 4y^2z)i + (x^3 \sin z - 3y)j - (e^x + 4\cos x^2y)k$ is solenoidal, then the cof b is	1.5 1.5 1.5	CO5 CO4
System of equations $x + 2y + 3z = 0$, $2x + 3y + z = 0$, $4x + 5y + 4z = 0$ has number of solutions. $= 2x^2i - 3yzj + xz^2k$ and $f = 2z - x^3y$, the value of \overline{A} . ∇f at the point 1, 1) is $= (bx + 4y^2z)i + (x^3 \sin z - 3y)j - (e^x + 4\cos x^2y)k$ is solenoidal, then the cof b is	1.5 1.5	CO4
$= 2x^{2}i - 3yzj + xz^{2}k \text{ and } f = 2z - x^{3}y, \text{ the value of } \overline{A}.\nabla f \text{ at the point}$ 1, 1) is $= (bx + 4y^{2}z)i + (x^{3}\sin z - 3y)j - (e^{x} + 4\cos x^{2}y)k \text{ is solenoidal, then the cof } b \text{ is}$	1.5	
of b is		CO4
$\frac{1}{10} \frac{10}{10} \frac{10}$		
$\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}$	1.5	CO4
maximum value of $f(x, y) = 1 - x^2 - y^2$ is	1.5	CO4
point where the function is neither minimum nor maximum is called as	1.5	CO4
value of $\lim_{x \to 0} \frac{1 - \cos x}{x^2}$ is	1.5	CO1
$u = x^2 + y^2 + z^2$, where $x = e^{2t}$, $y = e^{2t} \cos 3t$, $z = e^{2t} \sin 3t$ the total ative $\frac{du}{dt}$ is	1.5	CO4
SECTION B 20 marks 4 questions 5 marks each (scan and upload)		
She more b 20 marks " questions 5 marks each (sean and aproad)		
t Answer Type Question (5 marks each) Scan and Upload 4 questions 5 marks	20 Marks	СО
Ty Rolle's theorem on $f(x) = \begin{cases} x^2 + 1, & 0 \le x \le 1 \\ 3 - x, & 1 \le x \le 2 \end{cases}$	5	CO2
ne series of positive terms with an example and derive the necessary condition for	5	CO1
onvergence of a positive term series.	_	GOA
convergence of a positive term series. = $\log(x^3 + y^3 + z^3 - 3xyz)$, show that $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \frac{-9}{(x+y+z)^2}$.	5	CO4
$= \log(x^3 + y^3 + z^3 - 3xyz), \text{ show that } \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \frac{-9}{(x + y + z)^2}.$	5 5	CO4 CO1
$= \log(x^3 + y^3 + z^3 - 3xyz), \text{ show that } \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \frac{-9}{(x+y+z)^2}.$ the that $\beta(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}.$		
$= \log(x^3 + y^3 + z^3 - 3xyz), \text{ show that } \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \frac{-9}{(x + y + z)^2}.$		
$= \log(x^3 + y^3 + z^3 - 3xyz), \text{ show that } \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \frac{-9}{(x+y+z)^2}.$ the that $\beta(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}.$	5	
$= \log(x^{3} + y^{3} + z^{3} - 3xyz), \text{ show that } \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^{2} u = \frac{-9}{(x+y+z)^{2}}.$ that $\beta(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}.$ SECTION C 30 marks	5	C01
= l e tł ca	hat $\beta(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$. SECTION C 30 marks se studies 15 marks each subsections (scan and upload)	hat $\beta(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$.5SECTION C 30 marksse studies 15 marks each subsections (scan and upload)30 Marks

2	Case Study 2: (Fourier Series Expansion of functions)		
	(a). Define Fourier Series of a periodic function $f(x)$ and Dirichlet's conditions for the expansion of $f(x)$ as Fourier series.[4 marks](b) Derive Euler's formulae.[5 marks](c) Find the Fourier series of $f(x) = \begin{cases} 0, when - \pi \le x \le 0 \\ x^2, when \ 0 \le x \le \pi \end{cases}$ which is assumed to be periodic with period 2π .[6 marks]	15	CO3
	SECTION- D 20 marks (scan and upload)		
Q	Long Answer type Questions Scan and Upload (10 marks each)	20 Marks	СО
1	Solve the system of non-homogeneous equations $x + y - z = 0$, $2x - y + z = 3$ and $4x + 2y - 2z = 2$.	10	CO5
2	Diagonalize the matrix $A = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$	10	CO5