

11	If the matrix $\left[\begin{array}{ccc}x & 2 & x+2 \\ 3 & 5 & 8 \\ x+1 & 7-x & 12\end{array}\right]$ is singular, the value of x is $\ldots \ldots \ldots .$.	1.5	CO5
12	For consistent $m \times n$ non-homogeneous system of linear equations $A X=B$, if rank of $A=$ number of unknowns, then the system possesses number of solutions.	1.5	CO5
13	The system of equations $x+2 y+3 z=0,2 x+3 y+z=0,4 x+5 y+4 z=0$ hasnumber of solutions.	1.5	CO5
14	If $\bar{A}=2 x^{2} \boldsymbol{i}-3 y z \boldsymbol{j}+x z^{2} \boldsymbol{k}$ and $f=2 z-x^{3} y$, the value of $\bar{A} . \nabla f$ at the point $(1,-1,1)$ is \qquad	1.5	CO4
15	If $\bar{A}=\left(b x+4 y^{2} z\right) \boldsymbol{i}+\left(x^{3} \sin z-3 y\right) \boldsymbol{j}-\left(e^{x}+4 \cos x^{2} y\right) \boldsymbol{k}$ is solenoidal, then the value of b is	1.5	CO4
16	The divergence of ($\left.2 x^{2} z \boldsymbol{i}-x y^{2} z \boldsymbol{j}+3 y z^{2} \boldsymbol{k}\right)$ at the point (1,1,1) is $\ldots \ldots \ldots$.	1.5	CO4
17	The maximum value of $f(x, y)=1-x^{2}-y^{2}$ is $\ldots \ldots \ldots$.	1.5	CO4
18	The point where the function is neither minimum nor maximum is called as	1.5	CO4
19	The value of $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$ is $\ldots \ldots \ldots$.	1.5	CO1
20	If $u=x^{2}+y^{2}+z^{2}$, where $x=e^{2 t}, y=e^{2 t} \cos 3 t, z=e^{2 t} \sin 3 t$ the total derivative $\frac{d u}{d t}$ is	1.5	CO4
SECTION B 20 marks 4 questions 5 marks each (scan and upload)			
Q	Short Answer Type Question (5 marks each) Scan and Upload 4 questions 5 marks each	20 Marks	CO
1	Verify Rolle's theorem on $f(x)= \begin{cases}x^{2}+1, & 0 \leq x \leq 1 \\ 3-x, & 1 \leq x \leq 2\end{cases}$	5	CO2
2	Define series of positive terms with an example and derive the necessary condition for the convergence of a positive term series.	5	CO1
3	If $u=\log \left(x^{3}+y^{3}+z^{3}-3 x y z\right)$, show that $\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z}\right)^{2} u=\frac{-9}{(x+y+z)^{2}}$.	5	CO4
4	Prove that $\beta(p, q)=\frac{\Gamma(p) \Gamma(q)}{\Gamma(p+q)}$.	5	CO1
SECTION C 30 marks			
Q	Two case studies 15 marks each subsections (scan and upload)	$\begin{gathered} 30 \\ \text { Marks } \\ \hline \end{gathered}$	CO
1	Case Study 1: (Convergence and divergence of infinite series) (a) Define Geometric series and derive the conditions for its convergence and divergence. [5 marks] (b) Test the convergence of $\quad \sum_{n=1}^{\infty}\left(\frac{2^{n}+3}{3^{n}+1}\right)^{\frac{1}{2}}$ [5 marks] (c) Define D'Alembert's ratio test and using this, test the convergence of the series whose $n^{\text {th }}$ term is $\frac{(n+3)!}{3!n!3^{n}}$ [5 marks]	15	CO2

2	Case Study 2: (Fourier Series Expansion of functions) (a). Define Fourier Series of a periodic function $f(x)$ and Dirichlet's conditions for the expansion of $f(x)$ as Fourier series. (b) Derive Euler's formulae. (c) Find the Fourier series of $f(x)=\left\{\begin{array}{c}0, \text { when }-\pi \leq x \leq 0 \\ x^{2}, \text { when } 0 \leq x \leq \pi\end{array}\right.$ which is assumed to be periodic with period 2π. [6 marks]	15	CO3
	SECTION- D 20 marks (scan and upload)		
Q	Long Answer type Questions Scan and Upload (10 marks each)	$\begin{gathered} 20 \\ \text { Marks } \end{gathered}$	CO
1	Solve the system of non-homogeneous equations $x+y-z=0,2 x-y+z=3$ and $4 x+2 y-2 z=2$.	10	CO5
2	Diagonalize the matrix $A=\left[\begin{array}{lll}1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$	10	CO5

