Name: Enrolment No:		
Course Progra Course	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2021 Compiler Design Semester: VI : B. Tech. CSE Time 03 hrs. Code: CSEG3015 Max. Marks: 100	
SECTION A (All Questions Are Compulsory) Each Question will carry 5 Marks		
S. No.	Question	CO
Q 1	(i) Which phase of compiler is optional: (ii) Type checking is done before parsing: True/False (iii) Name the compiler module which interact with all phases of compiler: (iv) Name of the mathematical model used for implementation of lexical analyzer:___ (v) Assembly language are machine independent: True/False	CO1
Q 2	Write all the tokens in the following statement: printf("i=\%d, \&i=\%x, hello,++i",i,\&i);	CO2
Q 3	Find the first and follow for the following set of production rule: $\begin{aligned} & S \rightarrow \text { iCtSS` } \mid \mathrm{a} \\ & S^{\prime} \rightarrow \mathrm{eS} \mid \varepsilon \\ & C \rightarrow b \end{aligned}$	CO 3
Q 4	Identify the type of syntax directed translation(SDT) scheme for the following: (i) A->LM \{L.val=A.val, M.val=L.val, A.val=M.val\} (ii) A->QR \{R.val=A.val, Q.val=R.val, A.val=Q.val\} (iii) A->BC \{B.val=A.val $\}$ (a) S-attribute SDT (b) L-attribute SDT (c) Both S and L attribute SDT (d) None of the above	$\mathrm{CO4}$
Q 5	Identify the blocks and statements in the respective block for the following code: a $:=\mathrm{b}$ <S2> L1: b:=c <S3> if (...) goto L2 <S4> $\quad \mathrm{c}:=\mathrm{d}$ <S5> if (...) goto L1 <S6> L2: d:=a	$\mathrm{CO5}$
Q 6	i. Postfix notation for the expression $\mathrm{a}^{*} \mathrm{~d}-(\mathrm{b}+\mathrm{c})$ is:	$\mathrm{CO4}$
ii. What is the result of the given postfix expression? $\mathrm{abc}^{*}+$ where $a=3, b=2, \mathrm{c}=1: \ldots$		
:---:	:---:	:---:
SECTION B (All Questions Are Compulsory)		
Each Question will carry 10 Marks		
Q 7	Write short note on the following: i. Bootstrapping ii. Cross Compiler iii. Multi-pass compiler $(4+3+3)$ marks	CO1
Q 8	A desktop calculator generally accepts the symbols:,,$+- *$, and / as operators and digits viz. 0 , $1,2, \ldots, 9$ as operands. Develop a YACC code that evaluates a supplied input expression consisting of such operators and operands.	CO2
Q 9	$\begin{aligned} & \text { G=(\{S, B\},\{a,b\},P,S)} \begin{array}{l} \mathrm{S} \rightarrow \mathrm{aBa} \\ \mathrm{~B} \rightarrow \mathrm{bB} \mid \varepsilon \\ \text { i. Is this } \mathrm{LL}(1) \text { grammar. Give reason for your answer. } \\ \text { ii. Do the parsing of the string abba } \end{array} \\ & \text { i. } \end{aligned}$	CO3
Q 10	Consider the grammar with E as the start symbol. $\begin{aligned} & \mathrm{E} \rightarrow \mathrm{E}^{*} \mathrm{~T} \mid \mathrm{T} \\ & \mathrm{~T} \rightarrow \mathrm{~T}+\mathrm{F} \mid \mathrm{F} \\ & \mathrm{~F} \rightarrow \text { num } \end{aligned}$ i. Write the semantic action corresponding to each production rule. ii. Draw the syntax tree and Compute E.value for the root of the parse tree for the expression: $2 * 3+5 * 6+4$	CO4
Q 11	Generate the DFA and Parsing table in SLR parser for the following set of production rules: $\begin{aligned} & \mathrm{S} \rightarrow \mathrm{AA} \\ & \mathrm{~A} \rightarrow \mathrm{aA} \mid \mathrm{b} \end{aligned}$ $(5+5) \text { marks }$	CO3
SECTION-C (All Questions Are Compulsory) Each Question will carry 20 Marks		
	What is DAG? Discuss the steps for construction of DAG. Also explain the applications of DAG. Draw the DAG for the following three address code: 1. $\mathrm{S} 1:=4$ * i 2. $\mathrm{S} 2:=\mathrm{a}[\mathrm{S} 1]$ 3. $\mathrm{S} 3:=4 * \mathrm{i}$ 4. $\mathrm{S} 4:=\mathrm{b}[\mathrm{S} 3]$ 5. $\mathrm{S} 5:=\mathrm{s} 2 * \mathrm{~S} 4$ 6. $\mathrm{S} 6:=\operatorname{prod}+\mathrm{S} 5$ 7. Prod:= s6 8. $\mathrm{S} 7:=\mathrm{i}+1$ 9. $\mathrm{i}:=\mathrm{S} 7$ 10. if $\mathrm{i}<=20$ goto (1)	

