Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, May 2021					
Course: Computer GraphicsSemester: VIProgram: B. Tech. (CSE)Time : 03 hourCourse Code: CSEG 3003Max. Marks: 1					
	SECTION A				
 Each Question will carry 5 Marks The answers in this section are to be typed in. Sentence type answers should not exceed three sentences. 					
Q1	(a) How much memory would be required to design a 1280 X 1024 pixels monochrome display? (Write answer only)				
	(b) If we use direct coding of RGB values with 3 bits per primary colour, how many possible colours do we have for each pixel? (Write answer only)	2, 1, 2	CO1		
	(c) Compute the size of a 640 X 480 image at 240 pixels per inch. (Write answer only)				
Q2	(a) Write the names of any <i>two</i> aliasing effects. Name the techniques to overcome these effects.	3, 2	CO2		
	(b) A line segments can be scan converted directly using the line equation, i.e., $y = mx + c$. Then why Bresenham's algorithm is used for scan converting line segments? Specify the reason(s).				
Q3	 (a) Consider the recursive versions of flood-fill and boundary-fill region filling algorithms. Answer the following questions in the context of each of these algorithms: (i) For which region definition you apply this algorithm? (ii) What is the recursion termination criterion? (iii) How can the number of recursive calls be reduced? 	2, 2, 1	CO2		
Q4	 (a) Specify the conditions to identify the line segments under visible, invisible, and partially visible categories for Cohen-Sutherland clipping algorithm. (b) A two-dimensional point P(3, 4) is represented in homogeneous format as (3, 4, 1). Write two alternative homogeneous representations for this point P. 	3, 2	CO3		
Q5	 (a) Write two examples each of the Object and Image Space methods for Hidden Surface Elimination. Also brief why do they fall in the mentioned category (maximum three lines). (b) The type of curves can provide the larger number of control points and can provide local control over the curve. 	4, 1	CO4		
Q6	 (a) Diffused reflection at a point is given as I = I_s K_d cos (θ). Here, θ is the angle betweenvector andvector. The range of diffusion-reflection coefficient K_d is (b) Examples of imperfect mirror-type surfaces are and 	3, 2	CO5		

SECTION B				
 Each question will carry 10 marks These answers are to scanned and uploaded. 				
(a) Sketch a general Computer Graphics pipeline explaining each step in brief.				
(b) Explain briefly LCD and LED displays.	6, 4	CO1		
Consider a circle specified by the equation $(x - 10)^2 + (y - 5)^2 = 64$. Execute mid-point algorithm to scan convert this circle in the first and second quadrants. Show the states of algorithmic parameters during each iteration of the algorithm.	10	CO2		
A mirror is placed vertically such that it passes through the points (10, 0) and (0, 10). Find the reflected view of the triangle ABC with vertices A (5, 50), B (20, 40), C (10, 70).	10	CO3		
 (a) A unit, solid pyramid is placed in the Cartesian Coordinate Space as shown in the figure given below. If viewed from a point (2, 2, 2), determine which of its faces will not be visible. y y p 1 0 R x (b) State how do you determine depth at an arbitrary point (x, y) as per Z-Buffer algorithm.	8, 2	CO4		
 (a) Find the equation of the Bezier curve that passes through (0, 0) and (-4, 2), and controlled through (14, 10) and (4, 0). (b) Discuss Specular Reflection model and state its significance in determining illumination at a surface point. 	5, 5			
 OR (a) A cubic Bezier curve segment is described by the control points P₀(2, 2), P₁(4, 8), P₂(8, 8), and P₃(9, 5), Another curve segment is described by Q₀(a, b), Q₁(c, 2), Q₂(15, 2), and Q₃(18, 2). Find the values of a, b, and c so that the two curve segments join smoothly. (b) Discuss Gouraud shading. Explain briefly the interpolation technique adopted by Gouraud shading to determine intensity at an arbitrary point on solid surface. 	5,5	CO5		
SECTION C		<u> </u>		
-				
 (a) A pyramid defined by the coordinates A(0, 0, 0), B(1, 0, 0), C(0, 1, 0), and D(0, 0, 1) is mirror reflected in a plane that passes through C(0, 1, 0) and has a normal vector of direction N = I + J + K. Find the coordinates of the transformed pyramid. (b) Determine the normalization transformation that maps vertices defined in world coordinate system (WCS) window W to a display window D in Device Coordinate 	14, 6	CO3		
	 ch question will carry 10 marks ese answers are to scanned and uploaded. (a) Sketch a general Computer Graphics pipeline explaining each step in brief. (b) Explain briefly LCD and LED displays. Consider a circle specified by the equation (x - 10)² + (y - 5)² = 64. Execute mid-point algorithmic parameters during each iteration of the algorithm. A mirror is placed vertically such that it passes through the points (10, 0) and (0, 10). Find the reflected view of the triangle ABC with vertices A (5, 50). B (20, 40). C (10, 70). (a) A unit, solid pyramid is placed in the Cartesian Coordinate Space as shown in the figure given below. If viewed from a point (2, 2, 2), determine which of its faces will not be visible. y p / 1 / 0 / x / x / x / x / x / x / x / x / x	ch question will carry 10 marks exe answers are to scanned and uploaded. (a) Sketch a general Computer Graphics pipeline explaining each step in brief. (b) Explain briefly LCD and LED displays. Consider a circle specified by the equation $(x - 10)^2 + (y - 5)^2 = 64$. Execute mid-point algorithm is can convert this circle in the first and second quadrants. Show the states of algorithmic parameters during each iteration of the algorithm. A mirror is placed vertically such that it passes through the points (10, 0) and (0, 10). Find the reflected view of the triangle ABC with vertices A (5, 50), B (20, 40), C (10, 70). (a) A unit, solid pyramid is placed in the Cartesian Coordinate Space as shown in the figure given below. If viewed from a point (2, 2, 2), determine which of its faces will not be visible. (b) State how do you determine depth at an arbitrary point (x, y) as per Z-Buffer algorithm. (a) Find the equation of the Bezier curve that passes through (0, 0) and (-4, 2), and controlled through (14, 10) and (4, 0). (b) Discuss Specular Reflection model and state its significance in determining illumination at a surface point. (a) A cubic Bezier curve segment is described by the control points Pa(2, 2). P1(4, 8), P2(8, 8), and P3(9, 5). Another curve segment is described by Qu(a, b). Q1(c, 2). Q2(15, 2), and Q1(18, 2). Find the values of a, b, and c so that the two curve segments join smoothly. (b) Discuss Gouraud shading. Explain briefly the interpolation technique adopted by Gouraud shading to determine intensity at an arbitrary point on solid surface. SECTION C (c) A quyramid defined by the coordinates A(0, 0, 0), B(1, 0, 0), C(0, 1, 0), and D(0, 0, 1) is mirror reflected in a plane that passes through C(0, 1, 0) and has a normal vector of direction N = 1 + J + K. Find the coordinates of the transformed pyramid. (b) Determine the normalization transformation that maps vertices defined in world		

System (DCS). Lower left and upper right corners of W and D are (-5, -5), (5, 5) and (0, 0), (200, 200), respectively.

OR

(a) Execute Sutherland-Hodgman algorithm to clip the target polygon T₁T₂T₃T₄T₅T₆T₇T₈ against a rectangular clipping window ABCD shown in the figure given below. Show the sequence of coordinates included in the vertex output list during each iteration of the algorithm.

(b) Discuss Weiler-Atherton polygon clipping algorithm. Is it superior to Sutherland-Hodgman algorithm? Justify your answer.

12,8