

SECTION B

1. Each question will carry 10 marks
2. These answers are to scanned and uploaded.

\begin{tabular}{|c|c|c|c|}
\hline Q7 \& \begin{tabular}{l}
(a) Sketch a general Computer Graphics pipeline explaining each step in brief. \\
(b) Explain briefly LCD and LED displays.
\end{tabular} \& 6, 4 \& CO1 \\
\hline Q8 \& Consider a circle specified by the equation \((\boldsymbol{x}-\mathbf{1 0})^{2}+(y-5)^{2}=64\). Execute mid-point algorithm to scan convert this circle in the first and second quadrants. Show the states of algorithmic parameters during each iteration of the algorithm. \& 10 \& CO 2 \\
\hline Q9 \& A mirror is placed vertically such that it passes through the points \((\mathbf{1 0}, \mathbf{0})\) and \((\mathbf{0}, \mathbf{1 0})\). Find the reflected view of the triangle ABC with vertices \(\mathrm{A}(\mathbf{5}, \mathbf{5 0}), \mathrm{B}(\mathbf{2 0}, \mathbf{4 0}), \mathrm{C}(\mathbf{1 0}, \mathbf{7 0})\). \& 10 \& CO \\
\hline Q10 \& \begin{tabular}{l}
(a) A unit, solid pyramid is placed in the Cartesian Coordinate Space as shown in the figure given below. If viewed from a point \((\mathbf{2}, \mathbf{2}, \mathbf{2})\), determine which of its faces will not be visible. \\
(b) State how do you determine depth at an arbitrary point (\(\mathrm{x}, \mathrm{y}\)) as per Z-Buffer algorithm.
\end{tabular} \& 8,2 \& CO 4 \\
\hline Q11 \& \begin{tabular}{l}
(a) Find the equation of the Bezier curve that passes through (0, 0) and \((\mathbf{- 4}, \mathbf{2})\), and controlled through \((\mathbf{1 4}, \mathbf{1 0})\) and \((\mathbf{4}, \mathbf{0})\). \\
(b) Discuss Specular Reflection model and state its significance in determining illumination at a surface point. \\
OR \\
(a) A cubic Bezier curve segment is described by the control points \(\mathbf{P}_{\mathbf{0}}(\mathbf{2}, \mathbf{2}), \mathbf{P}_{\mathbf{1}}(\mathbf{4}, \mathbf{8}), \mathbf{P}_{\mathbf{2}}(\mathbf{8}\), \(\mathbf{8})\), and \(\mathbf{P}_{3}(\mathbf{9}, \mathbf{5})\), Another curve segment is described by \(\mathbf{Q}_{\mathbf{0}}(\mathbf{a}, \mathbf{b}), \mathbf{Q}_{1}(\mathbf{c}, \mathbf{2}), \mathbf{Q}_{\mathbf{2}}(\mathbf{1 5}, \mathbf{2})\), and \(\mathbf{Q}_{\mathbf{3}}(\mathbf{1 8}, \mathbf{2})\). Find the values of \(\mathbf{a}, \mathbf{b}\), and \(\mathbf{c}\) so that the two curve segments join smoothly. \\
(b) Discuss Gouraud shading. Explain briefly the interpolation technique adopted by Gouraud shading to determine intensity at an arbitrary point on solid surface.
\end{tabular} \& 5,5

5,5 \& $\mathrm{CO5}$

\hline
\end{tabular}

SECTION C

1. Each Question carries 20 Marks.

2. Answer in this section is to be scanned and uploaded.

Q12 (a) A pyramid defined by the coordinates $\mathbf{A}(\mathbf{0}, \mathbf{0}, \mathbf{0}), \mathbf{B}(\mathbf{1}, \mathbf{0}, \mathbf{0}), \mathbf{C}(\mathbf{0}, \mathbf{1}, \mathbf{0})$, and $\mathbf{D}(\mathbf{0}, \mathbf{0}, \mathbf{1})$ is mirror reflected in a plane that passes through $\mathbf{C}(\mathbf{0}, \mathbf{1}, \mathbf{0})$ and has a normal vector of direction $\mathbf{N}=\mathbf{I}+\mathbf{J}+\mathbf{K}$. Find the coordinates of the transformed pyramid.
(b) Determine the normalization transformation that maps vertices defined in world coordinate system (WCS) window \mathbf{W} to a display window D in Device Coordinate

System (DCS). Lower left and upper right corners of W and D are (-5, $\mathbf{- 5}$), (5,5) and $\mathbf{(0 , 0}),(\mathbf{2 0 0}, \mathbf{2 0 0})$, respectively.

OR

(a) Execute Sutherland-Hodgman algorithm to clip the target polygon $\mathrm{T}_{1} \mathrm{~T}_{2} \mathrm{~T}_{3} \mathrm{~T}_{4} \mathrm{~T}_{5} \mathrm{~T}_{6} \mathrm{~T}_{7} \mathrm{~T}_{8}$ against a rectangular clipping window ABCD shown in the figure given below. Show the sequence of coordinates included in the vertex output list during each iteration of the algorithm.

(b) Discuss Weiler-Atherton polygon clipping algorithm. Is it superior to SutherlandHodgman algorithm? Justify your answer.

