Name:
Enrollment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, June 2021

Programme Name: B. Tech. (All SOCS)
Course Name : Discrete Mathematics Course Code: CSEG 1012

Semester : II
Time : 03 hrs
Max. Marks : 100

Section A(All questions are compulsory, each question is of 5 marks)		
1.	Let D be a simple graph on 10 vertices such that there is a vertex of degree 1 , a vertex of degree 2 , a vertex of degree 3 , a vertex of degree 4 , a vertex of degree 5 , a vertex of degree 6 , a vertex of degree 7 , a vertex of degree 8 and a vertex of degree 9 . What can be the degree of the last vertex? A. 4 B. 0 C. 2 D. 5	CO4
2.	Radius of a graph G, denoted by $\operatorname{rad}(G)$ is defined by....? A. $\max \{e(v): v$ belongs to $V\}$ B. $\min \{e(v): v$ belongs to $V\}$ C. $\max \{d(u, v): u, v$ belongs to V, u does not equal to $v\}$ D. $\min \{d(u, v): u, v$ belongs to V, u does not equal to $v\}$	CO4
3.	In the poset $\left(\mathrm{Z}^{+}, \mid\right)$(where Z^{+}is the set of all positive integers and \midis the divison relation) the integers 9 and $\mathbf{3 5 1}$ are ... A. comparable B. not comparable C. comparable but not determined D. determined but not comparable	CO3
4.	The value of \boldsymbol{a}_{4} for the recurrence relation $\boldsymbol{a}_{\boldsymbol{n}}=\mathbf{2} \boldsymbol{a}_{n-1}+\mathbf{3}$, with $\boldsymbol{a}_{0}=\mathbf{6}$ is A. 320 B. 221 C. 141 D. 65	CO1
5.	The relation $\{(1,1),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2)\}$ on the set $\{1,2,3\}$ is \ldots. A. reflective, symmetric and transitive B. irreflexive, symmetric and transitive C. neither reflective, nor irreflexive but transitive D. irreflexive and antisymmetric	CO1
6.	The set $\{1, i,-i,-1\}$ under the operation multiplication is a \ldots A. semigroup B. subgroup C. cyclic group D. not a cyclic group	$\mathrm{CO5}$

SECTION B

(All questions are compulsory and Q11 has internal choices, each question is of $\mathbf{1 0}$ marks)

7.	Show that the set of all matrices of the form $\left[\begin{array}{ll}x & x \\ x & x\end{array}\right]$ where x is non-zero real number is a group under matrix multiplication.	CO5
8.	Draw the digraph and the Hasse diagram of (D_{20}, \leq), where \leq is the divisibility relation.	$\mathrm{CO3}$
9.	Use a truth table to determine whether the following argument form is valid or not. $\begin{aligned} & p \vee q \\ & p \rightarrow r \\ & q \rightarrow r \\ \therefore & r \end{aligned}$	CO2
10.	Show that the relation 'is congruent modulo 4 to' on the set of integers $\{0,1,2, \ldots, 10\}$ is an equivalence relation.	CO1
11.	Prove that union of two subgroups of a group G is again a subgroup of G if and only if one is contained in the other. OR Let G be a group. If index of a subgroup H in G is two, then prove that H is a normal subgroup of G.	$\mathrm{CO5}$

SECTION C

(Q12 is of $\mathbf{2 0}$ marks and it has internal choices)

If vertices u and v are connected in graph G, the distance between u and v in G, denoted by $d(u, v)$, is the length of a shortest (u, v)-path in G ; if there is no path connecting u and v we define $\mathrm{d}(u, v)$ to be infinite. Show that, for any three vertices u, v and w,

$$
\begin{gathered}
d(u, v)+d(v, w) \geq d(u, w) . \\
\text { OR }
\end{gathered}
$$

Check whether the following graph is bipartite, regular, Hamiltonian or not. Using Dijkstra's algorithm, determine the length of the shortest path from \boldsymbol{P} to \boldsymbol{Q}

12

