Name: Enrollment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, June 2021

Programme Name: B. Tech. (All SOCS) Course Name : Discrete Mathematics Course Code: CSEG 1012 Semester : II Time : 03 hrs Max. Marks : 100

	Section A (All questions are compulsory, each question is of 5 marks)	
1.	Let D be a simple graph on 10 vertices such that there is a vertex of degree 1, a vertex of degree 2, a vertex of degree 3, a vertex of degree 4, a vertex of degree 5, a vertex of degree 6, a vertex of degree 7, a vertex of degree 8 and a vertex of degree 9. What can be the degree of the last vertex? A. 4 B. 0 C. 2 D. 5	CO4
2.	 Radius of a graph <i>G</i>, denoted by <i>rad</i> (<i>G</i>) is defined by? A. max {<i>e</i>(<i>v</i>): <i>v</i> belongs to <i>V</i> } B. min {<i>e</i>(<i>v</i>): <i>v</i> belongs to <i>V</i>} C. max {<i>d</i>(<i>u</i>, <i>v</i>): <i>u</i>, <i>v</i> belongs to <i>V</i>, <i>u</i> does not equal to <i>v</i>} D. min {<i>d</i>(<i>u</i>, <i>v</i>): <i>u</i>, <i>v</i> belongs to <i>V</i>, <i>u</i> does not equal to <i>v</i>} 	CO4
3.	In the poset (Z ⁺ ,) (where Z ⁺ is the set of all positive integers and is the divison relation) the integers 9 and 351 are A. comparable B. not comparable C. comparable but not determined D. determined but not comparable	CO3
4.	The value of a_4 for the recurrence relation $a_n = 2 a_{n-1} + 3$, with $a_0 = 6$ is A. 320 B. 221 C. 141 D. 65	C01
5.	The relation {(1, 1), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2)} on the set {1, 2, 3} is A. reflective, symmetric and transitive B. irreflexive, symmetric and transitive C. neither reflective, nor irreflexive but transitive D. irreflexive and antisymmetric	CO1
6.	The set {1, <i>i</i> , - <i>i</i> , -1} under the operation multiplication is a A. semigroup B. subgroup C. cyclic group D. not a cyclic group	CO5

	SECTION B (All questions are compulsory and Q11 has internal choices, each question is of 10 marks)		
7.	Show that the set of all matrices of the form $\begin{bmatrix} x & x \\ x & x \end{bmatrix}$ where x is non-zero real number is a group under matrix multiplication.	CO5	
8.	Draw the digraph and the Hasse diagram of (D_{20}, \leq) , where \leq is the divisibility relation.	CO3	
9.	Use a truth table to determine whether the following argument form is valid or not. $p \lor q$ $p \to r$ $q \to r$ $\therefore r$	CO2	
10.	Show that the relation 'is congruent modulo 4 to' on the set of integers $\{0,1,2,,10\}$ is an equivalence relation.	CO1	
11.	Prove that union of two subgroups of a group G is again a subgroup of G if and only if one is contained in the other. OR Let G be a group. If index of a subgroup H in G is two, then prove that H is a normal subgroup of G .	CO5	
	SECTION C (Q12 is of 20 marks and it has internal choices)		
12	If vertices <i>u</i> and <i>v</i> are connected in graph G, the <i>distance</i> between <i>u</i> and <i>v</i> in G, denoted by $d(u, v)$, is the length of a shortest (u, v) -path in G; if there is no path connecting <i>u</i> and <i>v</i> we define d (u, v) to be infinite. Show that, for any three vertices <i>u</i> , <i>v</i> and <i>w</i> , $d(u, v) + d(v, w) \ge d(u, w)$. OR Check whether the following graph is bipartite, regular, Hamiltonian or not. Using Dijkstra's algorithm, determine the length of the shortest path from <i>P</i> to <i>Q</i> $A_1 + A_2 + A_3 + A_4 + A_$	CO4	