Name: Enrolment No.		
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End semester Examination- Even Semester, June 2021		
Course: Discrete Mathematics Programme: B.Tech LLB (cyber law) Semester: II Time: $\mathbf{0 3}$ hrs Course code: CSEG1012 Max. Marks: 100		
SECTION A Each question will carry 5 marks		
S. No.	Question	CO
Q1.	Find the minimal, maximal, greatest and least elements of the following poset (S,\|), (i.e. the relation \mid as divisibility) $S=\{2,3,5,30,60,120,180,360\}$	CO 3
Q2	"Set of all even integers with respect to addition forms a group". The statement is true or false.	CO5
Q3	Consider the following relation a set $A=\{1,2,3,4,5,6\}$, $R=\{(1,1),(2,2),(3,3),(4,4),(1,3),(3,1),(5,6),(6,5)\}$ Write only whether or not R is reflexive, symmetric, antisymmetric and transitive.	CO1
Q4	Define tautology and contradiction.	CO 2
Q5	Define order of a group. Hence state the Lagrange theorem.	CO5
Q6	A tree has two vertices of degree 2, one vertex of degree 3 and three vertices of degree 4. How many vertices of degree 1 does it have?	CO4
SECTION B Each question will carry 10 marks		
S. No.	Question	CO
Q7	Using mathematical induction, show that $3^{n}>n^{2}, \text { for } n \geq 2$	CO1

Q8	Consider the set $A=\{\{2\},\{4\},\{6\},\{2,4\},\{6,4\},\{2,4,6\}\}$. Draw the Hasse diagram of A under the set inclusion relation " \subseteq ". Hence Find GLB and LUB (if exists)	CO 3
Q9	Determine the validity of the following argument: Either I will pass the examination, or, I will not graduate. If I do not graduate, then I will go to Canada. I failed. Thus, I will go to Canada.	CO 2
Q 10	Solve the following recurrence relation $a_{n}-4 a_{n-1}+4 a_{r-2}=(n+1)^{2}, \text { given } a_{0}=1, a_{1}=1 .$	CO1
11	Let $M_{2}(Z)$ be the ring of all 2×2 matrices over the integers and $\left\{R=\left[\begin{array}{cc} a & a+b \\ a+b & b \end{array}\right], a, b, \in Z\right\}$ Prove or disprove that R is a sub-ring of $M_{2}(Z)$.	$\mathrm{CO5}$
	SECTION C Each question carries 20 marks	
Q12	a. Using the decomposition theorem, determine the chromatic polynomial, and hence the chromatic number of the graph as shown below.	CO 4

$\left.\begin{array}{|l|l|l|l|}\hline \text { b. Determine the minimal spanning tree of the weighted graph using Prim's } \\ \text { algorithm }\end{array}\right]$

