Name: Enrolment No:			
Cours Progra Cours Instru	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2021 Data Structures Semester: : B.Tech (Cyber Law) Time 03 hr Code: CSEG 1011 Max. Mar		
1. Each Question will carry 5 Marks 2. Instruction: Complete the statement / Select the correct answer(s)			
S. No.		Marks	CO
Q 1	```#include<stdio.h> main() { int a[]={1,2,3,4,5}; printf("%d%d%d%d%d",*a,*(a+0),*(0+a),a[0],0[a]); } Output of the following code will be \\ a. 12345 \\ b. 54321 \\ c. 01234 \\ d. 11111```	5	CO1
Q 2	```void abc(struct node *new1)\{ temp = head; if(head == NULL) head = new1; else\{ while(temp->next!= NULL) temp \(=\) temp->next; new \(1->\) prev \(=\) temp; temp->next = new1; \} \} \\ In the above function what the program want to do ? \\ a). deletion from the end \\ b). insertion from the beginning \\ c). insertion from the end \\ d). deletion from the end```	5	CO1
Q 3	Let the following circular queue can accommodate maximum six elements with the following data Front $=2$ and Rear $=4$ queue = \qquad ; L, M, N, \qquad What will happen after ADD O operation takes place? a) Front $=2$ Rear $=5$ queue $=$ \qquad ; L, M, N, O, \qquad	5	CO 2

	b) Front $=3$ Rear $=5$ queue $=\mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}$, \qquad c) Front $=3$ Rear $=4$ queue $=$ \qquad ; L, M, N, O, \qquad d) Front $=2$ Rear $=4$ queue $=\mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}$,		
Q 4	If the binary tree in figure is traversed in inorder, then the order in which the nodes will be visited is \qquad ? a). FEGCBDBA b). GCBDAFE c). GCDBFEA d). FDEGCBA	5	$\mathrm{CO3}$
Q 5	The keys $12,18,13,2,3,23,5$ and 15 are inserted into an initially empty hash table of length 10 using open addressing with hash function $\mathrm{h}(\mathrm{k})=\mathrm{k} \bmod 10$ and linear probing. What will be the value of 5th index ? If the index starts from 0 a). 23 b). 5 c). 15 d). 3	5	CO3
Q 6	Consider a complete graph G with 3 vertices. The graph G has ___ spanning trees.	5	CO1
Eac Inst	SECTION B estion will carry 10 marks ion: Write short / brief notes		
Q 1	What is Data Structure? How many types of DS are there? Write down the application of Data structures?	10	CO1
Q 2	What are circular linked list? WAP to Convert a singly linked list to circular linked list. OR What is Double-ended queue? Write functions for following operations? i) Insert at back ii) Delete from back iii) Insert at front	10	CO 2
Q 3	Convert $\mathrm{A}+(\mathrm{B} * \mathrm{C}-(\mathrm{D} / \mathrm{E} \wedge \mathrm{F}) * \mathrm{G}) * \mathrm{H}$ into postfix form showing stack status. Now add ")" at the end of expression $\mathrm{A}+(\mathrm{B} * \mathrm{C}-(\mathrm{D} / \mathrm{E} \wedge \mathrm{F}) * \mathrm{G}) * \mathrm{H})$ and also Push a "("on Stack.	10	$\mathrm{CO3}$

Q 4	A file contains the following characters with the frequencies as shown. If Huffman Coding is used for data compression, determine Huffman tree whose edges are assigned with binary values. Write code for each word.	10	CO2
Q 5	Construct an AVL Tree with following data: 10159121379453622.	10	CO3
	SECTION-C Instruction: Write long answer.		
Q 1	Suppose you have the following hash table, implemented using linear probing. The hash function we are using is the identity function, $\mathrm{h}(\mathrm{x})=\mathrm{x}$. In which order could the elements have been added to the hash table? There are several correct answers, and you should give all of them. Assume that the hash table has never been resized, and no elements have been deleted yet OR Construct the minimum spanning tree (MST) for the given graph using Prim's Algorithm	20	CO4

