

	b. This algorithm is starvation free. Which of the above statement is true? (ii) The context of a process in the PCB of a process does not contain : (a) the value of the CPU registers (b) the process state (c) memory-management information (d) context switch time	
Q4	(i) If the size of logical address space is 2 to the power of m , and a page size is 2 to the power of n addressing units, then the high order \qquad bits of a logical address designate the page number, and the \qquad low order bits designate the page offset. a) m, n b) n, m c) $m-n, m$ d) $m-n, n$ (ii) A swapper manipulates \qquad whereas the pager is concerned with individual \qquad of a process. (a) the entire process, parts (b) all the pages of a process, segments (c) the entire process, pages (d) none of the mentioned	CO 3
Q5	(i) If a disk fails in RAID level \qquad rebuilding lost data is easiest. a) 1 b) 2 c) 3 d) 4 (ii) In the \qquad algorithm, the disk head moves from one end to the other, servicing requests along the way. When the head reaches the other end, it immediately returns to the beginning of the disk without servicing any requests on the return trip. a) LOOK b) SCAN c) C-SCAN d) C-LOOK	CO 4
Q6	(i) All processes share a semaphore variable mutex, initialized to 1. Each process executes in the following manner: signal(mutex); critical section wait(mutex); In this situation: a. a deadlock will occur b. processes will starve to enter critical section c. several processes may be executing in their critical section d. All of these (ii) Banker's algorithm for resource allocation deals with \qquad ? a. Deadlock Prevention b. Deadlock Avoidance c. Deadlock Detection d. Deadlock Recovery	$\mathrm{CO5}$

SECTION B

1. Each question will carry $\mathbf{1 0}$ marks
2. Instruction: Write short / brief notes

Given memory partitions of $100 \mathrm{~KB}, 500 \mathrm{~KB}, 200 \mathrm{~KB}, 300 \mathrm{~KB}$ and 600 KB (in order), how would each of the first-fit, best-fit and worst-fit algorithms place processes of $212 \mathrm{~KB}, 417 \mathrm{~KB}$, 112 KB and 426 KB (in that order)? Which algorithm makes the most efficient use of memory?

Section C

1. Each Question carries 20 Marks.

2. Instruction: Write long answer.

Q12 Consider the disk queue with I/O requests on the following cylinders in their arriving order: 67, $12,15,45,48,50,109,89,56,59,34,88,130,24$. The disk head is assumed be at cylinder 80 and moving in the direction of increasing number of cylinders. The disk consists of total 150 cylinders.
(i) Show the disk head movement with diagram using FCFS, SSTF, LOOK and C-SCAN scheduling algorithms. Calculate the total head movements.
(ii) Requests cylinders 60,85 , and 90 arrive while processing at 50 . What will happen to these new requests on according to all the above scheduling algorithms?

OR
Consider a disk has 200 cylinders, numbered from 0 to 199. At some time the disk arm is at cylinder 100, and moving towards right direction. There is a queue of disk access requests for cylinders $30,85,110,100,105,126,135,55$ and 195 . Show the disk head movement with diagram using FCFS, SSTF, C-LOOK and C-SCAN scheduling algorithms. Calculate the total head movements.

