

SECTION B

Attempt all questions. Each question carries 10 marks. Question 5 has internal choice.

Q1	Using Newton's backward interpolation formula, find the value of $e^{-1.9}$ from the following table of the value of e^{-x}.									$\mathrm{CO2}$
	x		1		. 25	1.50	1.75	2		
	e^{-x}		0.3679	9.2	2865	0.2231	0.1738	0.1353		
Q2	Given that: $\frac{d y}{d x}=x y+y^{2} ; y(0)=1, y(0.1)=1.1169, y(0.2)=1.2773, y(0.3)=1.5049$ Find the solution at $x=0.4$, using Milne's method.									CO4
Q3	A slid rod is Evalu	der i give 0 30.2 uate	in a ven at $\mathrm{e} \frac{d x}{d t} \text { at }$	machi at vario 0.1 31.43 $\text { t } t=$	ne move 0.1 .	ves along nes t (in s	a fixed st sec.). $\begin{array}{l\|l\|} \hline & 0.4 \\ \hline 4 & 33.97 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { straight } 1 \\ \hline 0.5 \\ \hline 33.48 \\ \hline \end{array}$	od. Its 0.6 32.13	CO3
Q4	A real root of the equation $x^{3}-5 x+1=0$ lies in the interval $(0,1)$. Perform four iterations of the secant method.									CO1
Q5	Given x : $f(x)$ evalu (n the 			11 1452 alues in 60	23 2366 vton's divid in the table $\begin{array}{\|c\|} \hline 65 \\ \hline-2.4 \\ \hline \end{array}$	17 5202 ided diffe e:	Ference OR	rmula	CO2

SECTION C

Question of this section carries $\mathbf{2 0}$ marks and it has internal choice.

Q1

Solve the system of linear equations

$$
20 x+y-2 z=17 ; 3 x+20 y-z=-18 ; 2 x-3 y+20 z=25
$$

Using
a) Jacobi's iteration method,
b) Gauss-Seidel iteration method.

OR

Use Runge-Kutta method of fourth order to find the numerical solution at $x=1.4$ for

$$
\frac{d y}{d x}=x^{2}+y^{2}, y(1)=0
$$

Assume step size $h=0.2$.

