Na	me:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, June 2021

Course : Statistics, Numerical Methods & Algorithms Semester : II

Program : BCA Time : 03 Hour Course Code : MATH 1025 Max. Marks: 100

SECTION A

Attempt all questions. Each question carries 5 marks. This section contains multiple choice questions. For multiple choice question, only one option is correct.

S.No.		CO
Q1	Using Newton-Raphson method, the real root of $x \sin x + \cos x = 0$, which is near $x = \pi$ correct to three decimal places is: (A) 2.798 (B) 1.798 (C) 3.823 (D) 3.141	CO1
Q2	If $u = \frac{4xy^2}{z^3}$ and error in x, y, z be 0.001, the maximum relative error in u when $x = y = z = 1$ is: (A) 0.024 (B) 0.012 (C) 0.006 (D) 0.003	
Q3	Given that $\frac{dy}{dx} = \log_e(x + y)$, with the initial condition that $y = 1$ when $x = 0$. The approximated solution at $x = 0.5$ using Euler's method when step size $h = 0.1$ is: (A) 1 (B) 2 (C) 3 (D) 4	
Q4	In the forward difference table for the following data, x : $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	CO2
Q5	(A) -70 (B) -71 (C) -72 (D) -73 Given: $\frac{dy}{dx} = e^x - y^2$ with $y(0) = 1$. The approximate value of y when $x = 0.2$ correct upto 3 decimal places, using Taylor series method is: (A) 2.519 (B) 1.019 (C) 3.005 (D) 4.555	CO4
Q6	The value of $\int_0^1 \frac{1}{1+x} dx$ by Simpson's 1/3 rule is: (A) 0.96315 (B) 0.63915 (C) 0.69315 (D) 0.69915	CO3

	SECTION B		
	et all questions. Each question carries 10 marks. Question 5 has internal choice.		
Q1	Using Newton's backward interpolation formula, find the value of $e^{-1.9}$ from the following table of the value of e^{-x} . x 1 1.25 1.50 1.75 2 e^{-x} 0.3679 0.2865 0.2231 0.1738 0.1353	CO2	
Q2	Given that: $\frac{dy}{dx} = xy + y^2; \ y(0) = 1, y(0.1) = 1.1169, y(0.2) = 1.2773, y(0.3) = 1.5049.$ Find the solution at $x = 0.4$, using Milne's method.	CO4	
Q3	A slider in a machine moves along a fixed straight rod. Its distance x (in cm.) along the rod is given at various times t (in sec.). t : 0 0.1 0.2 0.3 0.4 0.5 0.6 x : 30.28 31.43 32.98 33.54 33.97 33.48 32.13 Evaluate $\frac{dx}{dt}$ at $t = 0.1$.	CO3	
Q4	A real root of the equation $x^3 - 5x + 1 = 0$ lies in the interval (0,1). Perform four iterations of the secant method.	CO1	
Q5	Given the values $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CO2	
	SECTION C		
Question Q1	Solve the system of linear equations $20x + y - 2z = 17; \ 3x + 20y - z = -18; \ 2x - 3y + 20z = 25.$ Using a) Jacobi's iteration method, b) Gauss-Seidel iteration method. OR Use Runge-Kutta method of fourth order to find the numerical solution at $x = 1.4$ for $\frac{dy}{dx} = x^2 + y^2, y(1) = 0.$ Assume step size $h = 0.2$.	CO4	