Name:		5				
Enrolm	nent No: UNIVERSITY WITH A PURPOS	TY WITH A PURPOSE				
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIE	S				
Course	End Semester Examination, May 2021 e: Data Structures Semes	ter: II				
Progra	03 hrs.					
Course	e Code: CSEG 1011 Max.	Marks: 100				
Instru						
	SECTION A					
	a Question will carry 5 Marks					
<u>2. msu</u> S. No.	ruction: Complete the statement / Select the correct answer(s)	Marks	СО			
	#include <stdio.h></stdio.h>	Marks	0			
Q 1	main()					
	int a[]= $\{1,2,3,4,5\};$					
	printf("%d%d%d%d%d",*a,*(a+0),*(0+a),a[0],0[a]);					
	}	5	CO1			
	Output of the following code will be					
	a. 12345					
	b. 54321					
	c. 01234					
$\overline{0}$	d. 11111					
Q 2	<pre>void abc(struct node *new1){ temp = head;</pre>					
	if(head == NULL)					
	head = new1;					
	else{					
	while(temp->next!= NULL)					
	temp = temp->next;					
	new1->prev = temp;	5	CO1			
	temp->next = new1;					
	} }					
	In the above function what the program want to do ? a). deletion from the end					
	b). insertion from the beginning					
	c). insertion from the end					
	d). deletion from the end					
Q 3	Let the following circular queue can accommodate maximum six elements with	the 5				
	following data Front = 2 and Rear = 4					
	queue =; L, M, N,,		CO2			
	What will happen after ADD O operation takes place?		0.04			
	a) Front = $2 \text{ Rear} = 5$					
	queue =; L, M, N, O,					

Q 3	 i) Insert at back ii) Delete from back iii) Insert at front Convert A+ (B * C – (D / E ^ F) * G) * H into postfix form showing stack status. 		
	OR What is Double-ended queue? Write functions for following operations?	10	CO2
Q 2	What are circular linked list? WAP to Convert a singly linked list to circular linked list.		
Q 1	What is Data Structure? How many types of DS are there? Write down the application of Data structures?	10	CO1
-	uestion will carry 10 marks tion: Write short / brief notes		
	SECTION B		
Q 6	Consider a complete graph G with 3 vertices. The graph G has spanning trees.	5	CO1
Q 5	The keys 12, 18, 13, 2, 3, 23, 5 and 15 are inserted into an initially empty hash table of length 10 using open addressing with hash function h(k) = k mod 10 and linear probing. What will be the value of 5th index ? If the index starts from 0 a). 23 b). 5 c). 15 d). 3	5	CO3
Q 4	b) Front = 3 Rear = 5 queue = L, M, N, O, c) Front = 3 Rear = 4 queue =; L, M, N, O, d) Front = 2 Rear = 4 queue = L, M, N, O, If the binary tree in figure is traversed in inorder, then the order in which the nodes will be visited is? (a) FEGCBDBA b). GCBDAFE c). GCDBFEA d). FDEGCBA	5	CO3

us	oding is use signed with	ed for d		ression, o	determin	e Huffma	an tree w		n		
	Character	rs]	Frequenci	es							
	а		10								
	e		15							10	CO2
	i		12								
	0		3								
	u		4								
	S		13								
	t		1								
5 Co	onstruct an	AVL T	ree with f	ollowin	g data: 1	0 15 9 12	2 13 79 4	5 36 22.		10	CO3
- I				Incture		FION-C	ongwar				
	Instruction: Write long answer. Suppose you have the following hash table, implemented using linear probing. The hash function we are using is the identity function, $h(x) = x$. 0 1 2 3 4 5 6 7 8 9 18 12 3 14 4 21 In which order could the elements have been added to the hash table? There are several correct answers, and you should give all of them. Assume that the hash table has never been resized, and no elements have been deleted yet OR Construct the minimum spanning tree (MST) for the given graph using Prim's Algorithm 10 12 14 16 14 16 14 12 18 12 18 12 18 12 18 12 19 118 12 118 1										