Name: Enrolment No:		
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online Examination, December 2020		
	Predictive Modelling Semester: III m: M. Tech. (CSE) Time $: 03$ hours Code: CSDA7002 Max. Marks: 100	
1. Each Question will carry 5 Marks 2. Instruction: Complete the statement / Select the correct answer(s)		
Q1	The relationship between number of beers consumed (x) and blood alcohol content (y) was studied in 16 male college students by using least squares regression. The following regression equation was obtained from this study: $\mathrm{y}=-0.0127+0.0180 \mathrm{x}$ The above equation implies that: a. each beer consumed increases blood alcohol by 1.27% b. on average it takes 1.8 beers to increase blood alcohol content by 1% c. each beer consumed increases blood alcohol by an average of amount of 1.8% d. each beer consumed increases blood alcohol by exactly 0.018	CO1
Q2	Regression analysis was applied to return rates of sparrowhawk colonies. Regression analysis was used to study the relationship between return rate (x : \% of birds that return to the colony in a given year) and immigration rate (y : \% of new adults that join the colony per year). The following regression equation was obtained. $y=31.9-0.34 x$ Based on the above estimated regression equation, if the return rate were to decrease by 10% the rate of immigration to the colony would: a. increase by 34% b. increase by 3.4% c. decrease by 0.34% d. decrease by 3.4%	CO1
Q3	A fund has a sample R-squared value close to 0.5 and it is doubtlessly offering higher risk adjusted returns with the sample size of 50 for 5 predictors. Find Adjusted R square value. a. $\quad 0.164$ b. $\quad 0.234$ c. 0.18 d. 0.423	CO2
Q4	The following temperatures were recorded (in F°) each day for two weeks. $82,72,83,75,80,78,82,73,60,79,80,78,83,81$ What is the mean for this set of data, if the outlier is removed? a. 75 b. 77.6 c. 78.9 d. 79.5	CO 4
Q5	For a multiple regression model, total sum of square (TSS) $=200$ and Error sum of squares $(E S S)=50$. The multiple coefficient of determination is a. 0.25 b. 4.00 c. 0.75 d. none of the above	CO 2

Q6	Suppose the correlation coefficient between height (as measured in feet) versus weight (as measured in pounds) is 0.80 . What is the correlation coefficient of height measured in inches versus weight measured in ounces? [12 inches = one foot; 16 ounces $=$ one pound] a. 0.80 b. 0.40 c. 0.533 d. cannot be determined from information given											CO2
1. Each question will carry 10 marks 2. Instruction: Write short / brief notes												
Q7	The tab grade, \qquad	below for 7 st	hows th dents.	numbe ind the	of abs orrelatio \qquad	nces, x , coeffi 0	In a Calc ient and 	culus cou interpre	rse and your	he final ult. 3 85	exam	CO2
Q8	$\begin{array}{c}\text { For a } \\ \text { paramet } \\ \text { regressi } \\ \text { signific }\end{array}$ Critical Denom. d.f. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 2	ultiple s), SS paran ce leve Values of	egressio $=134$ eters ar he F-Dis	mode and SS zero at ibution: \qquad 215.707 19.164 9.277 6.591 5.409 4.757 4.347 4.066 3.863 3.708 3.587 3.490 3.411 3.344 3.287 3.239 3.197 3.160 3.127 3.098 3.072 3.049 3.028 3.009 2.991	with 35 the 0.05 $=0.05$ Nun 4 224.583 19.247 9.117 6.388 5.192 4.534 4.120 3.838 3.633 3.478 3.357 3.259 3.179 3.112 3.056 3.007 2.965 2.928 2.895 2.866 2.840 2.817 2.796 2.776 2.759	obser state level. erator Deg 5 230.162 19.296 9.013 6.256 5.050 4.387 3.972 3.687 3.482 3.326 3.204 3.106 3.025 2.958 2.901 2.852 2.810 2.774 2.740 2.711 2.685 2.661 2.640 2.621 2.603	ations d test Use the es of Free \qquad 233.986 19.330 8.941 6.163 4.950 4.284 3.866 3.581 3.374 3.217 3.095 2.996 2.915 2.848 2.790 2.741 2.699 2.661 2.628 2.599 2.573 2.549 2.528 2.508 2.490	nd 9 in he null ollowing	depend hypothe F table 8 238.883 19.371 8.845 6.041 4.818 4.147 3.726 3.438 3.230 3.072 2.948 2.849 2.767 2.699 2.641 2.591 2.548 2.510 2.477 2.447 2.420 2.397 2.375 2.355 2.337	saria s that for the 9 240.543 19.35 8.812 5.999 4.772 4.099 3.677 3.388 3.179 3.020 2.896 2.796 2.714 2.646 2.588 2.538 2.494 2.456 2.423 2.393 2.366 2.342 2.320 2.300 2.282	les of the equired 10 241.882 19.396 8.786 5.964 4.735 4.060 3.637 3.347 3.137 2.978 2.854 2.753 2.671 2.602 2.544 2.494 2.450 2.412 2.378 2.348 2.321 2.297 2.275 2.255 2.236	$\mathrm{CO3}$
Q9	What do you mean by multicollinearity? Discuss the method of Variable Inflation Factors (VIF) for detecting multicollinearity.											CO4

1. Each Question carries 20 Marks.

2. Instruction: Write long answer.

Q12 \quad The number of officers on duty in a Delhi and the number of robberies for that day are:

Officers	10	15	16	1	4	6	18	12	14	7
Robberies	5	2	1	9	7	8	1	5	3	6

Calculate the regression line for this data, and the residual for the first observation, (10;5). What percentage of variation is explained by the regression line?

OR

A study involved comparing the per capita income (in thousands) to the number of medical
doctors per 10,000 residents. Six small cities in Uttarakhand had the observations:

Per capita income	8.6	9.3	10.1	8.0	8.3	8.7
Doctors	9.6	18.5	20.9	10.2	11.4	13.1

Calculate the regression line for this data. What percentage of variation is explained by the regression line? Predict the number of doctors per 10,000 residents in a town with a per capita income of 8500 .

