Name:							
Enrolm	ent No:	UNIVERSITY WITH A PURPOSE					
		ROLEUM AND ENERGY STUDIES nination, December 2020					
Program	: Predictive Modelling m: M. Tech. (CSE) Code: CSDA7002	Semester: III Time : 03 hours Max. Marks: 100					
	Question will carry 5 Marks uction: Complete the statement / Selec	SECTION A t the correct answer(s)					
Q1	 studied in 16 male college students by u equation was obtained from this study: y= -0.0127 + 0.0180x The above equation implies that: a. each beer consumed increases blood b. on average it takes 1.8 beers to increase 	ase blood alcohol content by 1% alcohol by an average of amount of 1.8%	C01				
Q2	was used to study the relationship betw in a given year) and immigration rate (following regression equation was obt y = 31.9 - 0.34x	on equation, if the return rate were to decrease by 10%	CO1				
Q3	1 1	close to 0.5 and it is doubtlessly offering higher risk of 50 for 5 predictors. Find Adjusted R square value.	CO2				
Q4	The following temperatures were record 82, 72, 83, 75, 80, 78, 82, 73, 60 What is the mean for this set of data, if a. 75 b. 77.6 c. 78.9 d. 79.5	0, 79, 80, 78, 83, 81	CO4				
Q5	For a multiple regression model, total (ESS) = 50. The multiple coefficient o a. 0.25 b. 4.00 c. 0.75 d. none of the above	sum of square (TSS) = 200 and Error sum of squares f determination is	CO2				

Q6	Suppose the correlation coefficient between height (as measured in feet) versus weight (as measured in pounds) is 0.80. What is the correlation coefficient of height measured in inches versus weight measured in ounces? [12 inches = one foot; 16 ounces = one pound] a. 0.80 b. 0.40 c. 0.533 d. cannot be determined from information given SECTION B									CO2		
	ch question truction: W		•									
Q7	The table below shows the number of absences, x, in a Calculus course and the final exam grade, y, for 7 students. Find the correlation coefficient and interpret your result.											
	X		1	0		2	4	3		3		CO2
	Y		95	90		90	70		0	85		
	U	significance level. Critical Values of the F-Distribution: $\alpha = 0.05$ Denom. Numerator Degrees of Freedom										
	d.f.	1	2	3	4	5	6	7	8	9	10	
	1	161.448	199.500	215.707	224.583	230.162	233.986	236.768	238.883	240.543	241.882	
	2	18.513	19.000	19.164	19.247	19.296	19.330	19.353	19.371	19.385	19.396	
	3	10.128	9.552	9.277	9.117	9.013	8.941	8.887	8.845	8.812	8.786	
	4	7.709	6.944 5.786	6.591	6.388 5.102	6.256 5.050	6.163	6.094	6.041	5.999	5.964	
	5	6.608	5.786	5.409	5.192	5.050	4.950	4.876	4.818	4.772	4.735	
	6	5.987	5.143	4.757	4.534	4.387	4.284	4.207	4.147	4.099	4.060	
	7 8	$5.591 \\ 5.318$	$4.737 \\ 4.459$	4.347 4.066	4.120 3.838	$3.972 \\ 3.687$	$3.866 \\ 3.581$	$3.787 \\ 3.500$	3.726 3.438	$3.677 \\ 3.388$	$3.637 \\ 3.347$	001
	9	5.117	4.256	3.863	3.633	3.482	3.374	3.293	3.230	3.179	3.137	CO3
	10	4.965	4.103	3.708	3.478	3.326	3.217	3.135	3.072	3.020	2.978	
	11	4.844	3.982	3.587	3.357	3.204	3.095	3.012	2.948	2.896	2.854	
	12	4.747	3.885	3.490	3.259	3.106	2.996	2.913	2.849	2.796	2.753	
	13	4.667	3.806	3.411	3.179	3.025	2.915	2.832	2.767	2.714	2.671	
	14	4.600	3.739	3.344	3.112	2.958	2.848	2.764	2.699	2.646	2.602	
	15	4.543	3.682	3.287	3.056	2.901	2.790	2.707	2.641	2.588	2.544	
	16	4.494	3.634	3.239	3.007	2.852	2.741	2.657	2.591	2.538	2.494	
	17	4.451	3.592	3.197	2.965	2.810	2.699	2.614	2.548	2.494	2.450	
	18	4.414	3.555	3.160	2.928	2.773	2.661	2.577	2.510	2.456	2.412	
	19 20	4.381	3.522	3.127 3.098	2.895 2.866	2.740	$2.628 \\ 2.599$	2.544 2.514	2.477 2.447	2.423	$2.378 \\ 2.348$	
		4.351	3.493			2.711				2.393		
	21	4.325	3.467	3.072	2.840	2.685	2.573	2.488	2.420	2.366	2.321	
	22	4.301	3.443	3.049	2.817 2.796	2.661	2.549 2.528	2.464	2.397	2.342	2.297 2.275	
	23 24	$4.279 \\ 4.260$	$3.422 \\ 3.403$	$3.028 \\ 3.009$	$2.796 \\ 2.776$	2.640 2.621	2.528 2.508	2.442 2.423	2.375 2.355	$2.320 \\ 2.300$	2.275	
	24 25	4.260	3.385	2.991	2.770	2.603	2.508 2.490	2.425	2.335	2.300	2.235	
												1
Q9) voli me	an hv m	nulticolli	nearitv?	Discuss	the met	hod of	Variable	Inflation	Factors	CO4

Q10	Regression diagnostics consists of autocorrelation, normality and homoscedasticity conditions on the residuals of the regression. Discuss these terms in brief. Assume the following (X,Y) data points: $(1,2), (2,5), (3,6), (3,7), (4,8), (5,11)$ The equation for the best fit line of this data is: Y= 2X+1. Apply the Durbin Watson statistic to find autocorrelation of residuals.										
Q11	Discuss the method to compute the coefficient of multiple linear regression with the help of an analytical method termed as Normal Equation method.										
	OR A jeweler prices diamonds on the basis of quality (with values from 0 to 8, with 8 being flawless and 0 containing numerous imperfections) and color (with values from 1 to 10, with 10 being pure white and 1 being yellow). Based on the price per carat (in thousands) of the following 10 diamonds weighing between 1.0 and 1.5 carats, determine the relationship between quality, color and price.									0, with) of the	
		COLOUI	R	QUALITY			PRICE				
		6		5 6			700 400				CO1
		3									
		5		8			540				
		8		1			650				
		9		3			600				
		5		4			400				
		4		0			250				
		2		6 7			300 700				
		8									
		6		4			560				
	Section C a Question carries 20 Marks. ruction: Write long answer. The number of officers on duty in a Delhi and the number of robberies for that day are:										
	Officers 1	10 15	16	1	4	6	18	12	14	7	
	Robberies 5		1	9	7	8	1	5	3	6	l
	Calculate the regression line for this data, and the residual for the first observation, (10; 5). What percentage of variation is explained by the regression line?										
	OR									CO3	
	A study involved comparing the per capita income (in thousands) to the number of medical doctors per 10,000 residents. Six small cities in Uttarakhand had the observations:										
	Per capita income	8.6	9.3	10.1		8.0	8.3		8.7		
	Doctors	9.6	18.5	20.9		10.2	11.4	ŀ	13.1		
	Calculate the regression line for this data. What percentage of variation is explained by the regression line? Predict the number of doctors per 10,000 residents in a town with a per capita income of 8500.										