Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES			
End Semester Examination, January 2020			
Program Name : B.Tech (APE Gas)		Semester : III	
Course Name : Fluid Mechanics		Time	03 hrs
Course Code : MECH2007		Max. Marks : 100	
Nos. of page(s) : 1			
Instructions: The question paper consists of three sections. Answer the questions section wise.			
SECTION A (Answer all questions)			
S. No.		Marks	CO
1.	Define (i) Ideal fluid and real fluid (ii) Surface tension and capillarity	5	C01
2	Differentiate between major and minor energy losses.	5	CO5
3.	Explain the terms path line, streak line, streamline, and stream tubes.	5	CO1
4	Explain how viscosity changes with temperature for liquids and gases	5	CO1
5	Write Navier stokes equation and explain the significance of each term in the equation.	5	CO3
6	What are NPSH, cavitation and priming	5	CO4
SECTION B (Answer all questions)			
7.	A rectangular plane surface 2 m wide and 3 m deep lies vertical in water with its 2 m edge parallel to water surface and coinciding with the surface. Determine the total pressure and position of center of pressure.	10	C01
8	Derive Euler's equation of motion along a streamline and get the Bernoulli's equation.	10	CO3
9	A horizontal venturimeter with inlet diameter 30 cm and throat diameter 15 cm is used to measure the flow of oil of specific gravity 0.8 . The discharge of oil thorough venturimeter is 50 letres/s, find the reading of the oil-mercury differential manometer. Take $\mathrm{C}_{\mathrm{d}}=0.98$.	10	CO4
10	Given that $u=-4 a x\left(x^{2}-3 y^{2}\right), v=4 a y\left(3 x^{2}-y^{2}\right)$. Examine whether these velocity components represent a physically possible two-dimensional flow. If so whether the flow is rotational or irrigational?	10	CO2
11	Derive continuity equation.	10	CO 2
	SECTION C		
12	The difference in water surface levels in two tanks, which are connected by three pipes in series of lengths $300 \mathrm{~m}, 170 \mathrm{~m}$, and 210 m and of diameters $300 \mathrm{~mm}, 200 \mathrm{~mm}$ and 400 mm respectively, is 12 m . Determine the rate of flow of water if co-efficient of friction are $0.005,0.0052$ and 0.0048 respectively. Considering: (i) minor losses (ii) neglecting minor losses.	20	CO5

