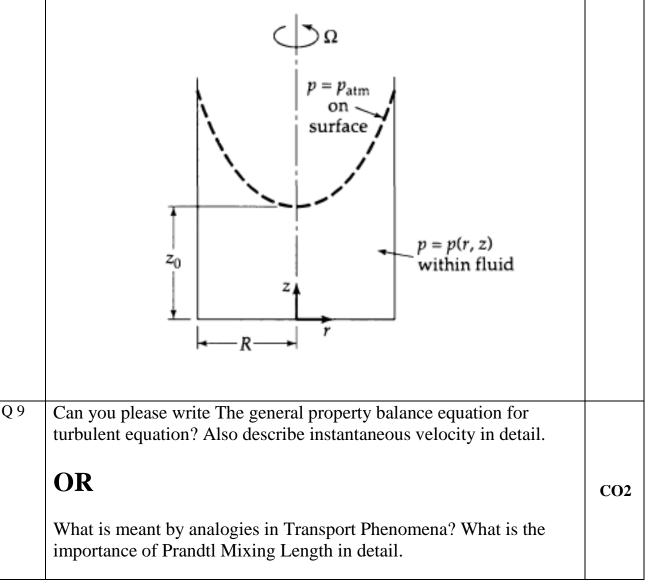

Name:				
Enroln	nent No:			
		UNIVERSITY WITH A PURPOSE		
	UNIVERSITY OF PET	ROLEUM AND ENERGY STUDIES		
~		nination, January 2021 (Online)		
	e: Advanced Transport Phenom			
Program: M. Tech. Chemical Spl PDE Time 03 hrs.				
Course	e Code: CHPD 7018	Max. Marks: 100		
Fa		$\frac{NA(6Q \times 5 = 30 \text{ marks})}{Complete the statement / Fill in the$		
	inks/ Type the answer in 20	arks. Complete the statement / Fill in the		
Dia	inks/ Type the answer in 20	-100 words.		
S.No.	Question		СО	
Q1				
	In the four parameter Carreau Equation the non-Newtonian Viscosity			
	η (Eta), and the strain rate $\dot{\gamma}$ (Gamma Dot) are related by following			
	equation:			
	$\frac{\eta - \eta_{\infty}}{\eta_0 - \eta_{\infty}} = [1 + (\lambda \dot{\gamma})^2]^{(n-1)/2}$			
	$\overline{\eta_0-\eta_\infty}-1$	$[1 + (\lambda \gamma)]$		
	Fill in the appropriate blank	s:	CO3	
	η ₀ (Greek Eta Zero)	=		
	• • • • • • • • • • • • • • • • • • •	=		
	λ (Greek Lambda)	=		
	n (English n)	=		
Q2	.			
		uids do not obey Newton's law of		
	• • • • •	ic liquids, we need to study several	CO3	
		the stress components can be measured. Is how Newtonian fluids, differ in stress-	005	
		Newtonian fluids or complex liquids.		
		······································		
Q3	The Substantial Derivative,	of a property is defined as		
	Da la			
	$\frac{Dc}{Dt} = \frac{\partial c}{\partial t} + (\mathbf{v} \cdot \nabla \mathbf{c})$			
			CO1	
	Where the Term-I is Dc/Dt , the Term-II is $\partial c / \partial t$, and the Term-II			
	is (v. ∇ c). Can you explain Term-I , II , and III if possible, with an			
	example.			



upward flow in a cylindrical annulus. Note that the momentum flux changes sign at the same value of r for which the velocity has a maximum. All the notation has its usual meaning. Derive an expression for velocity distribution, shear stress distribution, avg. velocity, maximum velocity and give full justifications.

OR

Recall the problem of Shape of the Surface of a Rotating Liquid. A liquid of constant density and viscosity is in a cylindrical container of radius R as shown in Fig. The container is caused to rotate about its own axis at an angular velocity Ω . The cylinder axis is vertical, so that $\mathbf{g_r} = \mathbf{0}, \mathbf{g_{\theta}} = \mathbf{0}$, and $\mathbf{g_z} = -\mathbf{g}$, in which g is the magnitude of the gravitational acceleration. Find the shape of the free surface of the liquid when steady state has been established.

Q 10	Write in detail about Reynolds Stress Tensor. Can you also provide a diagram? What is the importance.	CO3
Q 11	Write in deail about pressure and temperature dependence of Viscosity. Also please write how can we evaluate these proeprties?	CO2
Instru	Section C (1Q x 20 = 20 marks, Attempt one) ction: Write long answer.	
Q12	$\begin{array}{c} & & & \\ & &$	
	Problem Statement Despite the fact that there are several renewable and alternate sources of clean energy, coal remains one of the popular fuels in India for industrial and domestic consumption. We are all familiar with the process of burning of coal in lumps. In fact, the burning of coal is a chemical reaction. Though it is just an assumption, we can presume that coal is carbon just for the sake of simplicity. In that case, burning of coal is, at least, a chemical reaction with $C + O_2 \rightarrow CO_2$. It is common observation that coal particles or lumps are of irregular shape and size. So we may model them as spherical particles, therefore to	CO3, 20 marks

as to be happening in Cartesian System, as shown in the right hand
figure. In that case, we have solid flat plate of pure carbon, and
adjacent to it, is actually a gas film, of thickness, *L*. In that case, the
situation becomes very simple to write the modeling of burning of
coal. Given this situation, kindly answer the following:
<u>Question</u>
a. Draw an appropriate sketch of the problem, and label the coordinate
system. (4)
b. Write the suitable assumptions, and give justification. Use
meaningful notation, if possible. (4)
c. Can you please justify the assumptions or simplifications given in
the problem statement? (4)

d. Derive an expression for production rate of CO2. (8)