Name: Enrolment No:			
	UNIVERSITY OF PETROLEUM AND ENERGY STUI	MEG	
		ILS	
Progra	End Semester Examination, January 2021 mme Name: M. Tech CE + PD Semest	er : I	
Course Name: Chemical Reactor Engineering and DesignTime			hrs
Course Code : CHPD7004 Max. Ma			
	page(s) : 02		
	ions: 1) Answer the questions section wise in the answer booklet. 2) Assume suitable	data where	ver
necessa	ry. 3) The notations used here have the usual meanings.		
	SECTION A (Total Marks: 6 x 5 = 30)		
\triangleright	Attempt <u>all</u> the questions.		
S. No.		Marks	СО
Q 1	Write down the assumptions of a CSTR.	5	CO1
Q 2	Discuss about the internal effectiveness factor and overall effectiveness factor.	5	CO2
Q 3	How do you determine the rate limiting step in heterogeneous catalysis?	5	CO3
Q 4	How do you consider the molar flux term in case of equimolar counter-diffusion?	5	CO4
Q 5	Explain in brief about the working of a slurry reactor and its applications.	5	CO5
Q 6	How modeling of a bioreactor is different from a chemical reactor?	5	C05
-	SECTION B (Total Marks: 5 x 10 = 50)		
\triangleright	Attempt <u>all</u> the questions.		
Q 7	A liquid phase reaction $A + B \rightarrow C$ follows an elementary rate law and takes place in a 1 m ³ CSTR, to which the volumetric flow rate is 0.5 m/min and the entering concentration of A is 1 M. When the reaction takes place isothermally at 300 K with an equal molar feed of A and B, the conversion is 20%. When the reaction is carried out adiabatically, the exit temperature is 350K and the conversion is 40%. The hea capacity of A, B and C are 25, 35 and 60 J/mol.K, respectively. What is the rate of heat removal necessary for isothermal operation?	10 10	C01
Q 8	A sample of the tracer hytane at 320 K was injected as a pulse to a reactor and the effluent concentration was measured as a function of time. The resulting data is shown below. Time, min 0 2 4 6 8 10 12 14 Concentration (g/m ³) 0 5 10 6 3 1.5 0.6 0 Calculate the mean residence time for the reactor by the RTD obtained from a pulse input at 320 K. 6 8 10 12 14	10	CO2
	mput at 520 K.		

Q 10	Derive an expression for a diffusion through a film to a catalyst particle.	10	CO3		
Q 11	Explain about the K-L model used for a bubbling fluidized bed with a neat sketch.	10	CO5		
SECTION-C (Total Marks: 1 x 20 = 20)					
Q 12	What is a fixed bed reactor? Establish the mathematical equations in fluid and solid phases to design a fixed bed reactor along with boundary conditions. State the assumptions clearly.	20	CO4		