Name: Enrolment No:				
	UNIVERSITY OF PETROLEUM AND			
End Semester Examination, Jan 2021Course: Chemical Engineering ComputingSemester:IProgram: Chemical Engineering: MTech PDTime:03 hrCourse Code: CHPD 7002Max. Marks:100No. of Pages: 22Max. Marks:		exam		
	ctions: In this Open Book(<u>S</u>) and Notes Exam, you are allowe ling your textbook), your own class notes and solutions to ass			
<u>PLEAS</u>	SE SCAN YOUR ANSWERS AND UPLOAD (WITH CALC	ULATIONS)		
<u>Also</u> , pl	lease show all <u>intermediate</u> steps to earn full credit.			
	SECTION A: (Open Books Exam) (2*30 = 6	60 Marks) Scan and Upload		
Q 1	Consider the following system of equations, (with $x \equiv [x_1 + x_2] = 4x_1 + 3x_2 = 6$ (1) $f_1(x_1, x_2) \equiv 4x_1 + 3x_2 = 6$ (1) $f_2(x_1, x_2) \equiv 2x_1 + x_2 = 5$ (2) subject to the bounds: $0 \le x_1 \le 10, 0 \le x_2 \le 1$ a. Evaluate the <i>analytical</i> solution to give value	.0	(30 Points)	C01- C02
	a. Evaluate the <u>analytical</u> solution to give value b. Write the solution in terms of Cramers' rule of appropriate determinants as: $x_j = \mathbf{A_j} / \mathbf{A} $; $j = 1, 2$. Here, $ \mathbf{A} $ is the determinant of matrix, A . Obtain the so	(Eqn. 1.4 in the text) in terms		
Q. 2	Consider the set of equations in Problem 1. Use the Gamma the solution given $x_1^{(1)} = -1 \text{ and } x_2^{(1)} = -2$ Do only till: $x_1^{(2)}$ and $x_2^{(2)}$.	auss Seidel technique to find	(30 Points)	CO3- CO4

	SECTION B: (40 Marks) Scan and Upload					
Q. 3	Consider the following set of two ODE-IVPs $[dy/dt = f(y)]$: $\frac{dy_1}{dt} = 2y_1 + 6y_2$ $\frac{dy_2}{dt} = -6y_1 + 5y_2$ (a) Write this equation in terms of the Jacobian, <i>A</i> , of <i>f</i> (<i>y</i>). (b) Evaluate the eigenvalues of <i>A</i> What can you say about the trajectory (variation with time, <i>t</i>) of the system starting from non-steady state values of <i>y</i> .	(40 Points)	CO5			

* * *