Name: Enrolment No:			
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, Jan 2021 Chemical Engineering Computing Semester: I Chemical Engineering: MTech PD Time: $\mathbf{0 3} \mathbf{~ h r}$ Code: CHPD 7002 Max. Marks: $\mathbf{1 0 0}$ ges: 2	exam	
Instru (includ PLEAS Also, p	In this Open $\operatorname{Book}(\underline{S})$ and Notes Exam, you are allowed any number of books, all han your textbook), your own class notes and solutions to assignment problems, etc. (OBVIO SCAN YOUR ANSWERS AND UPLOAD (WITH CALCULATIONS) ase show all intermediate steps to earn full credit.	outs pro USLY no	
SECTION A: (Open Books Exam) (2*30 = 60 Marks) Scan and Upload			
Q 1	Consider the following system of equations, (with $\boldsymbol{x} \equiv\left[x_{1}, x_{2}\right]$) $\begin{array}{r} f_{1}\left(x_{1}, x_{2}\right) \equiv 4 x_{1}+3 x_{2}=6 \\ f_{2}\left(x_{1}, x_{2}\right) \equiv 2 x_{1}+x_{2}=5 \tag{2} \end{array}$ subject to the bounds: $0 \leq x_{1} \leq 10,0 \leq x_{2} \leq 10$ a. Evaluate the analytical solution to give values of x_{1} and x_{2} b. Write the solution in terms of Cramers' rule (Eqn. 1.4 in the text) in terms of appropriate determinants as: $\left.x_{j}=\left\|\mathbf{A}_{\mathbf{j}}\right\| /\|\mathbf{A}\|\right) ; \quad j=1,2 .$ Here, $\|\mathbf{A}\|$ is the determinant of matrix, \mathbf{A}. Obtain the solution using this rule. (15)	(30 Points)	$\begin{gather*} \text { CO1- } \tag{15}\\ \text { CO2 } \end{gather*}$
Q. 2	Consider the set of equations in Problem 1. Use the Gauss Seidel technique to find the solution given $x_{1}^{(1)}=-1 \text { and } x_{2}^{(1)}=-2$ Do only till: $x_{1}^{(2)}$ and $x_{2}^{(2)}$.	$\begin{gathered} (30 \\ \text { Points) } \end{gathered}$	$\begin{gathered} \mathrm{CO} 3- \\ \mathrm{CO} 4 \end{gathered}$

SECTION B: (40 Marks) Scan and Upload

Q. 3	Consider the following set of two ODE-IVPs $[d \boldsymbol{y} / d t=\boldsymbol{f}(\boldsymbol{y})]$: $\begin{aligned} & \frac{d y_{1}}{d t}=2 y_{1}+6 y_{2} \\ & \frac{d y_{2}}{d t}=-6 y_{1}+5 y_{2} \end{aligned}$ (a) Write this equation in terms of the Jacobian, \boldsymbol{A}, of $\boldsymbol{f}(\boldsymbol{y})$. (b) Evaluate the eigenvalues of \boldsymbol{A} What can you say about the trajectory (variation with time, t) of the system starting from non-steady state values of \boldsymbol{y}.	$\begin{gathered} (40 \\ \text { Points) } \end{gathered}$	CO5

