| Name: <br> Enrolment No: |  |  |  |
| :---: | :---: | :---: | :---: |
| Course: Finite Element Methods for Fluid Dynamics Semester: I <br> Program: M. Tech CFD Time: 03 hrs. <br> Course Code: ASEG 7022 Max. Marks: 100 <br> Pages: 03  <br> Instructions: Make use of sketch/plots to elaborate your answer. All sections are compulsory  |  |  |  |
| 1. Each Question will carry 5 Marks <br> 2. Instruction: Type your answers in the provided space |  |  |  |
| S. No. |  | Marks | CO |
| Q 1 | Which relations are used in one dimensional finite element modeling? <br> a) Stress-strain relation <br> b) Strain-displacement relation <br> c) Total potential energy <br> d) Total potential energy; Stress-strain relation; Strain-displacement relation. | [05] | CO2 |
| Q 2 | Stiffness matrix represents a system of $\qquad$ <br> a) Programming equations <br> b) Iterative equations <br> c) Linear equations <br> d) Program CG SOLVING equations | [05] | CO1 |
| Q 3 | What are the basic unknowns on stiffness matrix method? <br> a) Nodal displacements <br> b) Vector displacements <br> c) Load displacements <br> d) Stress displacements | [05] | CO1 |
| Q 4 | Write the element stiffness matrix for a beam element. <br> a) $K=\frac{2 E I}{l}$ <br> b) $K=\frac{2 E I}{l}\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$ <br> c) $K=\frac{2 E}{l}\left[\begin{array}{l}2 \\ 1\end{array}\right]$ <br> d) $K=\frac{2 E}{l}\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ | [05] | CO 2 |
| Q 5 | Principal of minimum potential energy follows directly from the principal of $\qquad$ <br> a) Elastic energy <br> b) Virtual work energy <br> c) Kinetic energy <br> d) Potential energy | [05] | CO 3 |


| Q 6 | Dimension of global stiffness matrix is <br> a) $N \mathrm{X} N$, where N is no of nodes <br> b) $M \mathrm{X} N$, where M is no of rows and N is no of columns <br> c) Linear <br> d) Eliminated | [05] | $\mathbf{C O 3}$ |
| :--- | :--- | :--- | :--- |

## SECTION B (50 marks)

## 1. Each question will carry $\mathbf{1 0}$ marks

2. Instruction: Write short/brief notes, scan and upload the document

| Q 7 | Solve the following equation using a two-parameter trial solution by the RayleighRitz method, $\frac{d y}{d x}+y=0, \quad y(0)=1$ | [10] | CO2 |
| :---: | :---: | :---: | :---: |
| Q 8 | Define the following terms with suitable sketches; <br> (i) Shell element; (ii) Beam element; (iii) Truss element; (iv) 3D element | [10] | $\mathrm{CO3}$ |
| Q 9 | Solve the differential equation for a physical problem expressed as $\frac{d^{2} y}{d x^{2}}+100=0$ $0 \leq x \leq 10$ with boundary conditions as $y(0)=0$ and $y(10)=0$ using <br> (i) Point collocation method <br> (ii) Sub domain collocation method | [10] | CO3 |
| Q 10 | A 3 node rod element has a quadratic shape function matrix: $N=\left\langle 1-\frac{3 x}{L}+\frac{2 x^{2}}{L^{2}}, \frac{4 x}{L}-\frac{4 x^{2}}{L^{2}},-\frac{x}{L}+\frac{2 x^{2}}{L^{2}}\right\rangle$ <br> For $L=1 \mathrm{~m}, E=200 \times 10^{9} \mathrm{~Pa}, u_{1}=0, u_{2}=5 \times 10^{-6} \mathrm{~m}, u_{2}=15 \times 10^{-6} \mathrm{~m}$ <br> Find: <br> a. The displacement $u$ at $x=0.25 \mathrm{~m}$. <br> b. The strain as a function of $x$. <br> c. The strain at $x=0.25 \mathrm{~m}$. <br> d. The stress at $x=0.25 \mathrm{~m}$ | [10] | CO4 |


| Q 11 | Given the following stress tensor $\sigma=\left[\begin{array}{lll} 10 & 20 & 30 \\ 20 & 40 & 50 \\ 30 & 50 & 60 \end{array}\right]$ <br> I. What is the value of von Mises stress? <br> II. Propose two other stress tensor that will have the same von Mises stress? <br> III. Do all stress tensors having the same von Mises stress also have the same principle stresses? <br> IV. Do all stress tensors having the same principle stresses also have the same von Mises stress? | [10] | CO4 |
| :---: | :---: | :---: | :---: |
| SECTION-C (20 marks) <br> 1. Question carries 20 Marks and has internal choice. <br> 2. Instruction: Write long answer, scan and upload the document |  |  |  |
| Q 12 | Consider a 1 mm diameter, 50 mm long aluminum pin fin as shown in the figure below that is used to enhance the heat transfer from a surface wall maintained at $300^{\circ} \mathrm{C}$. The governing differential equation and the boundary conditions are given by, $k \frac{d^{2} T}{d x^{2}}=\frac{P h}{A_{c}}\left(T-T_{\infty}\right) ; \quad T(0)=T_{w}=300^{\circ} C, \quad \frac{d T}{d x}=0$ <br> Let $k=200 \mathrm{~W} / \mathrm{m} /{ }^{\circ} \mathrm{C}$ for aluminum, $h=20 \mathrm{~W} / \mathrm{m}^{20} \mathrm{C}, T_{\infty}=30^{\circ} \mathrm{C}$. Estimate the temperature distribution in the fin at 10 equal points using the Galerkin residual method using an appropriate polynomial trial function. <br> OR <br> Consider the bar shown in figure axial force $\mathrm{P}=30 \mathrm{KN}$ is applied as shown. Determine the nodal displacement, stresses in each element and reaction forces. | [20] | C05 |

