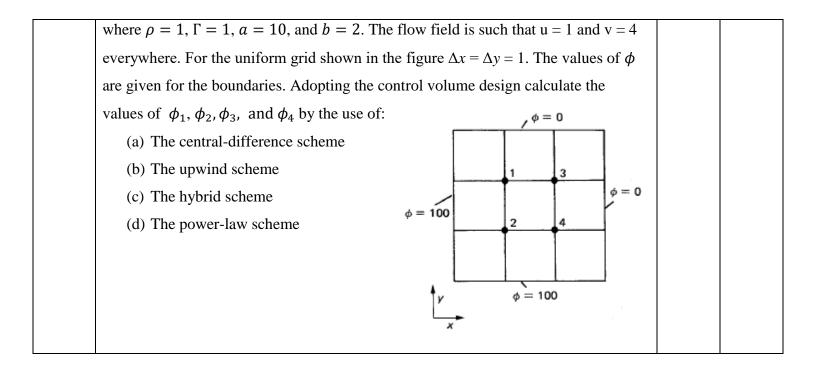
Name:


Enrolment No:

	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES							
Online End Semester Examination, January 2021								
Course:	Finite Volume Methods for Conservation Laws Semester: I							
Program: M. Tech CFD Time: 03 hrs								
Course Code: ASEG 7021 Max. Marks		: 100						
Pages: 0								
-	ions: Make use of sketch/plots to elaborate your answer. All sections are compulso	ry						
	SECTION A (30 marks)	v						
1. Each	1. Each Question will carry 5 Marks							
	action: Type your answers in the provided space							
S. No.		Marks	СО					
Q 1	Which of these models will directly give the conservative equations suitable for the							
Q I	finite volume method?							
	a) Finite control volume moving along with the flow							
	b) Finite control volume fixed in space	[05]	CO2					
	c) Infinitesimally small fluid element moving along with the flow	[05]	002					
	d) Infinitesimally small fluid element fixed in space							
	d) infinitesiniarly shari field element fixed in space							
Q 2	Which of these terms need a surface integral?							
× -	a) Diffusion and rate of change terms							
	b) Convection and source terms							
	c) Convection and diffusion terms	[05]	CO1					
	d) Diffusion and source terms							
Q 3	Which of these terms need a volume integral while modelling steady flows?							
C -	a) Convection term							
	b) Diffusion term	F0 F 1	001					
	c) Source term	[05]	CO1					
	d) Rate of change term							
Q 4	In a one-dimensional flow, the volume integral becomes							
	a) a line integral							
	b) an area integral	[05]	CO2					
	c) a surface integral	[05]	02					
	d) a surface integral and the Gauss divergence theorem							
Q 5	The discretization of the transient term using the finite volume approach is more like							
	the spatial discretization of							
	a) the convection term							
	b) the diffusion term	[05]	CO3					
	c) the source term							
	d) the anti-diffusion term							

Q 6	When the first-order implicit Euler scheme is unconditionally stable, the solution is		
	a) stationary for large time-steps		
	b) oscillatory for large time-steps	[05]	CO3
	c) stationary for small time-steps	[00]	000
	d) oscillatory for small time-steps		
	SECTION B (50 morts)		
	SECTION B (50 marks)		
	Each question will carry 10 marks Instruction: Write short/brief notes, scan and upload the document		
Q 7	Explain in details the philosophy of the SIMPLE method. What is the need for a		
	staggered grid?	[10]	CO2
		[=0]	001
Q 8	Consider the steady state diffusion of a property ϕ in a one-dimensional domain		
	defined in figure. The process is governed by		
	defined in figure. The process is governed by		
	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\Gamma \frac{\mathrm{d}\phi}{\mathrm{d}x} \right) + S = 0$		
	dx (dx)		
	where Γ is the diffusion coefficient and S is the source term. Boundary values of ϕ at		
	points A and B are prescribed.		
	Control volume boundaries	[10]	CO3
		[*•]	0.00
	$\phi_{A} = constant$ $\phi_{B} = constant$		
	Control volume Nodal points		
	Explain the several steps involved in discretizing the geometry and the equation to		
	obtain the appropriate solutions of the governing differential equation.		
Q 9	In compressible viscous flows the energy equation is completely decoupled from the		
	continuity and momentum equations, i.e. the solution of energy equation is not		
	required for obtaining pressure and velocity fields. Prove it.	[10]	CO3

Q 10	Classify the steady two-dimensional velocity potential equation:		
	$\left(1-M^2 ight)\phi_{xx}+\phi_{yy}=0$	[10]	CO4
	where M is mach number. Explain the physical meaning of various classifications based on M .		
Q 11	What do you mean by initial and boundary conditions? Define various types of boundary conditions which are usually encountered in CFD problems.	[10]	CO4
-	SECTION-C (20 marks) stion carries 20 Marks and has internal choice. ruction: Write long answer, scan and upload the document		
Q 12	A property \emptyset is transported by means of convection and diffusion through the one- dimensional domain sketched in figure below. The governing equation below; $\frac{d}{dx}(\rho u \emptyset) = \frac{d}{dx}\left(\tau \frac{d\emptyset}{dx}\right)$ boundary conditions are $\emptyset_0 = 1$ at $x = 0$ and $\emptyset_L = 0$ at $x = L$. Using five equally spaced cells (for first two cases) and the central differencing scheme for convection and diffusion calculate the distribution of \emptyset as a function of x for cases: (i) Case 1: $u = 0.1 \text{ m/s}$, using 5 cells (ii) Case 2: $u = 2.5 \text{ m/s}$, using 5 cells (iii) Case 3: $u = 2.5 \text{ m/s}$, using 10 cells $\psi_{-1} _{x=0}$ and compare the results with the analytical solution given below. The following data apply: length $L = 1.0 \text{ m}$, $p = 1.0 \text{ kg/m}^3$, $\Gamma = 0.1 \text{ kg/m/s}$. $\frac{\phi - \phi_0}{\phi_L - \phi_0} = \frac{\exp(\rho u x/\Gamma) - 1}{\exp(\rho u L/\Gamma) - 1}$ OR In a steady two-dimensional situation, the variable ϕ is governed by $div (\rho u \phi) = div (\Gamma grad \phi) + a - b\phi$	[20]	CO5

