Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, January-February 2020

Course: Computational Gas Dynamics Program: M. Tech. CFD Course Code: ASEG 7020 Semester: I Time: 03 hrs. Max. Marks: 100

SECTION A

Instructions: This Section has 06 questions and all questions are compulsory. Select all the correct answer(s).

S. No.		Marks	СО
Q 1	For a one-dimensional flow of a perfect gas an expansion wave is a region in the flow where		CO1
	i. The speed of acoustic waves increases monotonically		
	ii. The speed of acoustic waves decreases monotonically	05	
	iii. The speed of entropy waves increases monotonically		
	iv. The speed of entropy waves increases monotonically		
	v. Pressure decreases monotonically		
Q 2	Across a contact discontinuity		
	i. The speed of entropy waves increases	05	CO1
	ii. The speed of entropy waves remains constant		
	iii. The entropy increases		
	iv. The pressure remains constant		
	v. The temperature remains constant		
Q 3	Roe's approximate Riemann solver		
	i. Yields exact solution for a single shock		
	ii. Yields exact solution for a single contact	05	CO2
	iii. Yields exact solution for a single expansion wave		
	iv. Allows expansion shock		
	v. Yields inaccurate solution for a single compression wave		

Q 4	 In context to the solution of 1D unsteady Euler equation, which of the following statements are true? i. For subsonic flow FTFS violates stability criteria ii. For subsonic flow FTBS satisfy stability criteria for all waves iii. For subsonic flow FTBS satisfy stability criteria for at least one family of waves iv. FTBS satisfies stability criteria for supersonic right-running flow v. FTBS violates stability criteria for supersonic left-running flow 	05	CO3
Q 5	 The one dimensional unsteady Euler equations can be approximated as three waves, these waves may travel at Speeds higher than the flow speed for subsonic flow Speeds lower than the flow speed for subsonic flow Speeds equal to the flow speed Speeds higher than the flow speed for supersonic flow Speeds lower than the flow speed for supersonic flow Speeds lower than the flow speed for supersonic flow 	05	CO3
Q 6	 At an expansive sonic point i. The flow velocity is equal to the speed of sound ii. The velocity magnitude goes to zero iii. The wave speed value goes to zero iv. The wave speed changes direction from right to left v. The wave speed changes direction from left right 	05	CO3

SECTION B

Instructions: This Section has 05 questions and all questions are compulsory. Scan and upload the answers. The answer should be of short type (up to 200 words or equivalent numbers).

Q 7	Deduce the eigenvalues of the Jacobian Matrix A, for the one dimensional Euler		
	Equations given by		
	where $\frac{\partial \mathbf{u}}{\partial t} + A \frac{\partial \mathbf{u}}{\partial x} = 0,$ $\mathbf{u} = \begin{bmatrix} \rho \\ \rho u \\ \rho E \end{bmatrix} \text{ and } A = \frac{\partial f}{\partial u}$	10	CO1
	with		

	$\boldsymbol{f} = \begin{bmatrix} \rho \boldsymbol{u} \\ \rho \boldsymbol{u}^2 + \boldsymbol{p} \\ (\rho \boldsymbol{E} + \boldsymbol{p}) \boldsymbol{u} \end{bmatrix}$		
Q 8	Consider the Riemann problem for the following system of linear equations: $ \frac{\partial u_1}{\partial t} + \frac{\partial u_2}{\partial x} = 0, $ $ \frac{\partial u_2}{\partial t} + \frac{\partial u_3}{\partial x} = 0, $ $ \frac{\partial u_3}{\partial t} + 4 \frac{\partial u_1}{\partial x} - 17 \frac{\partial u_2}{\partial x} + 8 \frac{\partial u_3}{\partial x} = 0. $ Write the system of equations in the form: $ \frac{\partial \vec{u}}{\partial t} + A \frac{\partial \vec{u}}{\partial x} = 0. $ Thus find the left eigenvectors of the Jacobian matrix A.	10	CO1
Q 9	Write down the expressions for the conservative numerical fluxes for the followingnumerical schemes for the solution of 1D scalar wave equation:a) FTBSb) FTCS	10	CO3
Q 10	Discuss following techniques in context to the solution of 1D unsteady Euler equations. a) Flux Vector Splitting b) Wave Speed Splitting	10	CO4
Q 11	Consider the scalar flux function illustrated below. Find the conservative numerical flux $f_{i+1/2}^n$ of Godunov's and Roe's first order upwind method.	10	CO4

	$ \begin{array}{c} 3 \\ -1 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2$		
Instruc	SECTION-C tions: This Section has 02 questions and only 01 question needs to be answered. Sca	an and up	bload the
	. The answer should be of long type (up to 500 words or equivalent numbers).	-	1
Q 12	Find the Roe's approximate solution to the Riemann problem for 1 D Euler equation		
	at t = 0.01 s if p_L = 50,000 N/m ² , ρ_L = 1 kg/m ³ , u_L = 100 m/s and p_R = 5000 N/m ² , ρ_R =		
	0.125 kg/m ³ , $u_R = 0$ m/s.		
	OR		
	Roe's approximate Riemann problem for the Euler problem is given as		
	$\frac{\partial \boldsymbol{u}}{\partial t} + A_{RL} \frac{\partial \boldsymbol{u}}{\partial x} = 0$	20	CO2
	where		
	$\boldsymbol{u}(x,0) = \begin{cases} \boldsymbol{u}_L & x < 0\\ \boldsymbol{u}_R & x > 0 \end{cases}$		
	Calculate the Roe-average velocity at the cell interface in terms of the velocities and		
	densities on the left and right of the cell interface.		