Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, January 2021

Course: Advanced Fluid Mechanics and Heat Transfer-ASEG7019 Programme: M.Tech CFD

Semester: I

Max. Marks: 100

Time: 03 hrs.

	SECTION A		
G M		Γ	
S. No.	This section is having six Question and all are Compulsory to answer	Marks	CO
Q 1	Consider laminar natural convection from a vertical hot plate. Will the heat flux be	5	CO1
	higher at the top or at the bottom of the plate? Why ?	-	001
Q 2	What is a boundary condition? How many boundary conditions do we need to specify	_	CO3
	for a two dimensional heat transfer problem?	5	CO3
Q 3	What does the coefficient of compressibility of a fluid represent? How does it differ		
	from isothermal compressibility?	5	CO1
Q 4	Consider two identical small glass balls dropped into two identical containers, one		
	filled with water and the other with oil. Which ball will reach the bottom of the	5	CO1
	container first? Why?	5	cor
Q 5	Consider two identical fans, one at sea level and the other on top of a high mountain,		
25	running at identical speeds. How would you compare (a). the volume flow rates and	_	
		5	CO2
	(b). the mass flow rates of these two fans?		
Q6.	Consider a sphere and a cylinder of equal volume made of copper. Both the sphere and		
	the cylinder are initially at the same temperature and are exposed to convection in the	5	CO3
	same environment. Which do you think will cool faster, the cylinder or the sphere?	5	COS
	Why?		
	SECTION B	L	
Q 7	A steel ball [c=0.46 kJ/kg °C, k=35 W/m. °C] 5.0 cm in diameter and initially at a		
	uniform temperature of 450°C is suddenly placed in a controlled environment in which		
	the temperature is maintained at 100°C. The convection heat transfer coefficient is 10	10	CO3
	W/m^2 . °C. Calculate the time required for the ball to attain a temperature of 150° C.	10	005
	Use the following data: $\rho = 7800 \text{ kg/m}^3$, $h = 10 \text{ W/m}^2$. °C,		

	$V = 2xt\hat{\imath} - 2yt\hat{\jmath}$		
	Where the velocity is in ft/s when x, y and t are in feet and seconds, respectively.		
	Determine expressions for the local and convective components of acceleration in the		
	x and y directions what is the magnitude and direction of the velocity and the		
	accelration at the point $x=y=1$ ft at the time $t=0$		
Q 10	An air fuel mixture is compressed by a piston in a cylinder of an internal combustion		
	engine the origin of coordinate y is at the top of the cylinder, and y points straight down		
	as shown. The piston is assumed to move up at constant speed $V_{\text{p}}.$ The distance L		
	between the top of the cylinder and the piston decreases with time according to the		
	linear approximation $L=L_{bottom}-V_p$ t, where L_{bottom} is the location of the piston when it		
	is at the bottom of its cycle at time t=0, the density of the air-fuel mixture in the cylinder		
	is every where equal to $\rho(0)$, Estimate the density of the air fuel mixture as a function		
	of time and the given parameters during the piston's up stroke.		
	Cylinder	10	CO3
	L_{bottom} L_{bottom} L_{bottom} L_{bottom} L_{bottom} L_{bottom} $Time t$ $Time t = 0$		
Q11	Air at 20° C flows past a 800 mm long plate at a velocity of 45 m/s. If the surface of		
	the plate is maintained at 300° C determine (a). The heat transferred from the entire		
	plate length to air taking into consideration both laminar and turbulent portions of the		
	boundary layer, (b). the percentage error if the boundary layer is assumed to be	10	CO4
	turbulent from the leading edge of the plate. Assume unit width of the plate. Take the		
	properties of air at 160°C as thermal conductivity 0.03638 W/m K, υ = 30.08 × 10 ⁻⁶		
	m^2/s , Pr= 0.682		

	Laminar Region:		
	$\overline{h} = 0.664 \ \frac{k}{x_c} \ (\text{Re}_c)^{0.5} \ (\text{Pr})^{0.333}$		
	Turbulent Region from the Leading edge:		
	$\overline{h} = 0.036 \frac{k}{L} \operatorname{Re}_{L}^{0.8} \operatorname{Pr}^{0.333}$		
	Turbulent Boundary Layer Region:		
	$\overline{h} = 0.036 \frac{k}{L - x_c} [(\text{Re}_L)^{0.8} - (\text{Re}_c)^{0.8}] \text{Pr}^{0.333}$		
	SECTION-C		
Q 12	The velocity profile for laminar flow is an annulus is given by		
	$u(r) = -\frac{\Delta p}{4\mu L} \left[R_o^2 - r^2 + \frac{R_o^2 - R_i^2}{\ln\left(\frac{R_i}{R_o}\right)} \ln \frac{R_o}{r} \right]$		
	R _i R _o u(r)	20	CO5
	Where $\Delta p/L=-10$ kPa/m is the pressure gradient, μ is the viscosity (SAE 10 oil at 20°C)		
	0.1 N.s/ m ² and R ₀ =5 mm and R _i = 1 mm are the outer and inner radii. Find the volume		
	flow rate, the average velocity, and the maximum velocity.		
	(OR)		
	A chip is dissipating 0.6 W of power in a DIP with 12 pin leads. The materials		

the table below. If the temperature of the leads is 40°C, estimate the temperature						
at the junction of the chip.						
The thermal conductivity of Silicon varies greatly with temperature from 153.5 W/m						
0 C at 27 0 C to 113.7 W/m. 0 C at 100 0 C and the value 120 W/m. 0 C reflects the						
anticipation that the to	emperature of the si	licon chip wi	ll be close to $100 {}^{0}\text{C}$			
Section and	Thermal	Thickness	Heat Transfer Surface Area			
Material	Conductivity,	mm				
	W/m. °C					
Junction			Diameter 0.4 mm			
Construction						
Silicon Chip	120	0.4	3mm × 3mm			
Eutectic bond	296	0.03	$3 \text{ mm} \times 3 \text{ mm}$			
Copper Lead frame	386	0.25	3 mm $\times 3$ mm			
Plastic Separator	1	0.2	$12 \times 1 \text{ mm} \times 0.25 \text{ mm}$			
Copper leads	386	5	$12 \times 1 \text{ mm} \times 0.25 \text{ mm}$			
	Air gap	Junction Bond wir Chip Bond	es Case Leads			