Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, January 2021 Semester: I			
SECTION A			
S. No.	This section is having six Question and all are Compulsory to answer	Marks	CO
Q 1	Consider laminar natural convection from a vertical hot plate. Will the heat flux be higher at the top or at the bottom of the plate? Why?	5	CO1
Q 2	What is a boundary condition? How many boundary conditions do we need to specify for a two dimensional heat transfer problem?	5	CO3
Q 3	What does the coefficient of compressibility of a fluid represent? How does it differ from isothermal compressibility?	5	CO1
Q 4	Consider two identical small glass balls dropped into two identical containers, one filled with water and the other with oil. Which ball will reach the bottom of the container first? Why?	5	CO1
Q 5	Consider two identical fans, one at sea level and the other on top of a high mountain, running at identical speeds. How would you compare (a). the volume flow rates and (b). the mass flow rates of these two fans?	5	CO2
Q6.	Consider a sphere and a cylinder of equal volume made of copper. Both the sphere and the cylinder are initially at the same temperature and are exposed to convection in the same environment. Which do you think will cool faster, the cylinder or the sphere? Why?	5	CO3
SECTION B			
Q 7	A steel ball [c=0.46 kJ/kg $\left.{ }^{\circ} \mathrm{C}, \mathrm{k}=35 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}\right] 5.0 \mathrm{~cm}$ in diameter and initially at a uniform temperature of $450^{\circ} \mathrm{C}$ is suddenly placed in a controlled environment in which the temperature is maintained at $100^{\circ} \mathrm{C}$. The convection heat transfer coefficient is 10 $\mathrm{W} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C}$. Calculate the time required for the ball to attain a temperature of $150^{\circ} \mathrm{C}$. Use the following data: $\rho=7800 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{~h}=10 \mathrm{~W} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C}$,	10	CO3

Q 8	For a flow in the $x y$ plane, the x component of velocity is given by $u=A x^{2} y^{2}$, where A $=0.3 \mathrm{~m}^{-3} \cdot \mathrm{~S}^{-1}$, and x and y are measured in meters. Find a possible y component for steady incompressible flow. Is it also valid for unsteady, incompressible flow? Why? How many possible y components are there? Determine the equation of the streamline for the simplest y component of velocity. Plot the streamlines through $(1,4)$ and $(2,4)$ use approximate scale.	10	CO2
Q 9	A 3 m high and 5 m wide wall consists of long $16 \mathrm{~cm} \times 22 \mathrm{~cm}$ cross section horizontal bricks ($\mathrm{k}=0.72 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}$) separated by 3 cm thick plaster layers $\left(\mathrm{k}=0.22 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}\right)$ there are also 2 cm thick plaster layer on each side of the brick and 3 cm thick rigid foam $\left(\mathrm{k}=0.026 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}\right)$ on the inner side of the wall. The indoor and the outdoor temperatures are $20^{\circ} \mathrm{C}$ and $-10^{\circ} \mathrm{C}$, and the convection heat transfer coefficient on the inner and the outer sides are $\mathrm{h}_{1}=10 \mathrm{~W} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C}$ and $\mathrm{h}_{2}=25 \mathrm{~W} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C}$, Respectively. Assuming one dimensional heat transfer and disregarding radiation, determine the rate of heat transfer through the wall. The velocity in a certain two dimentional flow field is given by the equation	10	CO4

	$V=2 x t \hat{\imath}-2 y t \hat{\jmath}$ Where the velocity is in ft / s when x , y and t are in feet and seconds, respectively. Determine expressions for the local and convective components of acceleration in the x and y directions what is the magnitude and direction of the velocity and the accelration at the point $x=y=1 \mathrm{ft}$ at the time $\mathrm{t}=0$		
Q 10	An air fuel mixture is compressed by a piston in a cylinder of an internal combustion engine the origin of coordinate y is at the top of the cylinder, and y points straight down as shown. The piston is assumed to move up at constant speed V_{p}. The distance L between the top of the cylinder and the piston decreases with time according to the linear approximation $L=L_{\text {bottom }}-V_{p} t$, where $L_{\text {bottom }}$ is the location of the piston when it is at the bottom of its cycle at time $t=0$, the density of the air-fuel mixture in the cylinder is every where equal to $\rho(0)$, Estimate the density of the air fuel mixture as a function of time and the given parameters during the piston's up stroke.	10	$\mathrm{CO3}$
Q11	Air at $20^{\circ} \mathrm{C}$ flows past a 800 mm long plate at a velocity of $45 \mathrm{~m} / \mathrm{s}$. If the surface of the plate is maintained at $300^{\circ} \mathrm{C}$ determine (a). The heat transferred from the entire plate length to air taking into consideration both laminar and turbulent portions of the boundary layer, (b). the percentage error if the boundary layer is assumed to be turbulent from the leading edge of the plate. Assume unit width of the plate. Take the properties of air at $160^{\circ} \mathrm{C}$ as thermal conductivity $0.03638 \mathrm{~W} / \mathrm{m} \mathrm{K}, v=30.08 \times 10^{-6}$ $\mathrm{m}^{2} / \mathrm{s}, \operatorname{Pr}=0.682$	10	$\mathrm{CO4}$

	Laminar Region: $\bar{h}=0.664 \frac{k}{x_{c}}\left(\operatorname{Re}_{c}\right)^{0.5}(\operatorname{Pr})^{0.333}$ Turbulent Region from the Leading edge: $\bar{h}=0.036 \frac{k}{L} \operatorname{Re}_{L}^{0.8} \operatorname{Pr}^{0.333}$ Turbulent Boundary Layer Region: $\bar{h}=0.036 \frac{k}{L-x_{c}}\left[\left(\operatorname{Re}_{L}\right)^{0.8}-\left(\operatorname{Re}_{c}\right)^{0.8}\right] \operatorname{Pr}^{0.333}$		
	SECTION-C		
Q 12	The velocity profile for laminar flow is an annulus is given by $u(r)=-\frac{\Delta p}{4 \mu L}\left[R_{o}^{2}-r^{2}+\frac{R_{o}^{2}-R_{i}^{2}}{\ln \left(\frac{R_{i}}{R_{o}}\right)} \ln \frac{R_{o}}{r}\right]$ Where $\Delta \mathrm{p} / \mathrm{L}=-10 \mathrm{kPa} / \mathrm{m}$ is the pressure gradient, μ is the viscosity (SAE 10 oil at $20^{\circ} \mathrm{C}$) $0.1 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}$ and $\mathrm{R}_{0}=5 \mathrm{~mm}$ and $\mathrm{R}_{\mathrm{i}}=1 \mathrm{~mm}$ are the outer and inner radii. Find the volume flow rate, the average velocity, and the maximum velocity. (OR) A chip is dissipating 0.6 W of power in a DIP with 12 pin leads. The materials	20	C05

