Name:

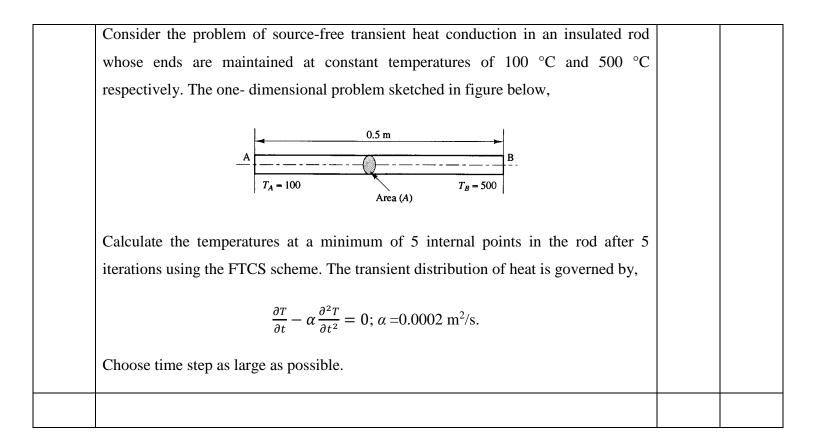
Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, January-February 2020

Course: Introduction to CFD Program: M. Tech. CFD Course Code: ASEG 7001 Semester: I Time: 03 hrs. Max. Marks: 100

SECTION A

Instructions: This Section has 06 questions and all questions are compulsory. Select all the correct answer(s).


S. No.		Marks	CO
Q 1	The conservative form of governing equations for fluid flows is obtained with the following model(s) of flow:i. Infinitesimally small fluid element moving in space		
	ii. Infinitesimally small fluid element fixed in space	05	CO1
	iii. Finite control volume moving in space		
	iv. Finite control volume fixed in space		
	v. Molecular approach		
	The Navier-Stokes equations can be used to solve the following problem		
Q 2	i. Dispersion of pollutant in atmosphere		
	ii. Free Molecular flow over an spacecraft		
	iii. Flow of plasma in a magnetic field	05	CO1
	iv. Circulation of blood in arteries		
	v. Bombardment of neutrons on a thin foil		
	For a Neumann boundary condition,		
Q 3	i. The value of primitive variable is known		
	ii. The value of the derivative of primitive variable is known		
	iii. The values of primitive variable and its derivative is known	05	CO1
	iv. Neither the value of primitive variable nor the its derivative is known		
	v. The value of primitive variable is computed as a part of solution		

	iii. The convergence is faster for successive under-relaxation when compared to	05	CO3
	ii. The convergence is faster for successive over-relaxation when compared to pure Gauss-Seidel method.		
	method.		
ΥU			
Q 6	For the solution of elliptic equations using relaxation techniques,		
	v. Sixth order derivative		
	iv. Fifth order derivative		
	iii. Fourth order derivative	05	CO2
	ii. Third order derivative		
Q 5	i. Second order derivative		
	The solution contains dispersion error if the leading term in the truncation error is		
	v. By choosing higher order schemes		
	iv. By reducing time step		
	iii. By increasing CFL number beyond 1	03	
	ii. By increasing CFL number below 1	05	CO2
	i. By reducing mesh size		
	Consider the solution of one-dimensional unsteady scalar advection equation. The accuracy of a numerical solution can be enhanced by		

viscous fluid moving in space and hence derive the <i>x</i> -momentum equation for fluids in non- conservation form. Change the <i>x</i> -momentum equation thus obtained into its conservation form.	Q 7		10	CO1
---	-----	--	----	-----

Q 8	Consider the following system of linear equations that governs a 2-dimensional,		
Q o	irrotational, inviscid, steady flow of a compressible gas.		
	$(1 - M_{\infty}^{2})\frac{\partial u'}{\partial x} + \frac{\partial v'}{\partial y} = 0$ $\frac{\partial u'}{\partial y} - \frac{\partial v'}{\partial x} = 0$	10	CO2
	Classify the above system as hyperbolic or elliptic for a supersonic freestream Mach		
	number.		
	Consider the viscous flow of air over a flat plate. At a given station in the flow		
Q 9	direction, the variation of the flow velocity, u , in the direction perpendicular to the		
	plate (the y direction) is given at discrete grid points equally spaced in y direction with		
	$\Delta y = 3 \text{ mm.}$		
	y (mm) u (m/s)		
	0 0		
	3 45.75		
	6 80.45 9 135.0		
		10	CO2
	Imagine that the values of u listed above are discrete values at discrete grid points	-	
	located at $y = 0, 3, 6$ and 9 mm as obtained from a numerical finite difference solution		
	of the flowfield. For viscosity coefficient, $\mu = 1.7895 \times 10^{-5} \text{ kg/m-s}$, using these discrete		
	values; Calculate the shear stress at the wall τ_w three different ways, namely:		
	a. Using a first order one sided difference		
	b. Using the second order one sided difference		
	c. Using the third order one sided difference		
	Analyze the stability of the following explicit for the solution of the scalar advection		
Q 10	equation hence deduce the stability criterion for this scheme.		
	$u_{i}^{n+1} = u_{i}^{n} - c \frac{\Delta t}{\Delta x} \frac{u_{i+1}^{n} - u_{i-1}^{n}}{2}$	10	CO3

Q 11	Consider the 2-dimensional transient heat conduction equation given below. The Crank-Nicolson discretization of the equation results in a penta-diagonal system of equations. Demonstrate an algorithm to solve the system of equations iteratively. $\frac{\partial T}{\partial t} = \alpha \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right)$						CO3
	ctions: This Section has (. The answer should be o	-	s and only	-	on needs to be answered. Sca equivalent numbers).	in and up	bload the
Q 12	relaxation in conjunction formula, for the follows	on Gauss-Sei ing mesh wi below. Obt	del iterativ th uniform tain the re	ve scheme v n spacing ar sults correc	, using the successive over with five-point discretization ad with boundary conditions of to two decimal places by ation factor of 1.2. 200 200 200 200	20	CO4

