Name: Enrolment No:	
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES	
End Semester Examination, December 2020	
Programme Name: M. Tech. A\&RE	Semester : I
Course Name : Introduction to Robotics	Time : 03 Hrs
Course Code : ECEG7002	Max. Marks: 100
Nos. of page(s) : 02	
Instructions: Attempt all the questions	

SECTION A (5 X 6 = 30 Marks)			
S. No.		Marks	CO
Q 1	Elucidate the working of encoder with the help of neat and clean diagram and differentiate incremental and absolute encoder.	5 M	CO1
Q 2	With respect to the characteristics of sensor elucidate the following terms: (i) Resolution (ii) Sensitivity (iii) Linearity (iv) Range	5 M	CO 2
Q 3	Explain the difference between path planning and trajectory planning with proper example.	5 M	CO 3
Q 4	What is Lagrangian mechanics and how it is different from Newtonian mechanics?	5 M	$\mathrm{CO3}$
Q 5	What is joint space trajectory planning.	5 M	CO4
Q 6	Explain third-order polynomial trajectory planning.	5 M	CO4
SECTION B (10 X 5 = 50 Marks)			
Q 7	Derive the force-acceleration relationship for the 1-DOF system shown in figure, using both the Lagrangian mechanics as well as the Newtonian mechanics. Assume the wheels have negligible inertia.	10 M	CO2
Q 8	Design the schematic representation of a 3-DOF mobile robot by using appropriate symbols.	10 M	CO 3

