Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, Jan 2021

Course: M.Sc.(H) Chemistry
Program: Advanced Organic chemistry
Course Code: CHEM7018
Semester: I
Time: 03 hrs.
Max. Marks: 1

Instructions: Read the instructions given below carefully:

All questions are compulsory.

SECTION A

S. No).		Marks	CO
Q 1	a	The IUPAC name of the compound CH ₃ CH ₂ OCH ₃ is		
		(i) Ethyl methanol		
		(ii) Methyl ethanol	2	CO1
		(iii) Ethoxy methane		
		(iv) Methoxy ethane		
	b	The common name of CH ₂ =CH-CHO is		
		(i) Vinyl aldehyde		
		(ii) Allyl aldehyde	2	CO1
		(iii) Acrolein		
		(iv) Propioaldehyde		
	c	State True/False	1	CO1
		The IUPAC name of CH ₃ CONHCH ₃ is N-methyl acetamide.	1	COI
Q 2	a	A student heats ethanol with acidified potassium manganite (VII) solution.	2	
		Ethanoic acid forms in the reaction. What is the colour change seen in this		
		reaction?		
		(i) colourless to orange		CO3
		(ii) colourless to purple		
		(iii) orange to colourless		
		(iv) purple to colourless		
	b	When phenol is treated with excess bromine water it gives	2	
		(i) m-bromophenol		
		(ii) o- and p-bromophenol		CO3
		(iii) 2,4-dibromophenol		
		(iv) 2,4,6-tribromophenol		
	c	State True/False	1	CO3
		On nitration of benzaldehyde, NO ₂ group occupies 0,p- position of benzaldehyde.		COS
Q 3	a	Dehydration of alcohol is an example of	2	
		a. addition reaction		
		b. elimination reaction		CO3
		c. substitution reaction		
		d. redox reaction		

	b	Acetic acid on heating at high temperature forms	2	
	U	(i) Succinic anhydride	2	
		(ii) Acetic anhydride		CO3
		(iii) Acetyl acetate		CO3
		(iv) Methane		
	c	State True/False	1	
		The least basic compound among CH ₃ NH ₂ , (CH ₃) ₂ NH, NH ₃ , C ₆ H ₅ NH ₂ is NH ₃ .	1	CO3
Q 4	a	An organic compound A containing C, H and O has a pleasant odour with boiling	2	
,		point of 78°C. On boiling A with concentrated H ₂ SO ₄ , a colourless gas is produce		
		which decolourises bromine water and alkaline KMnO ₄ . The organic liquid A is		
		(i) C_2H_5OH		CO3
		(ii) CH ₃ OH		
		(iii) CH ₃ OCH ₃		
		(iv) CH ₃ COOH		
	b	Catalytic dehydrogenation of a primary alcohol gives a	2	
		(i) Ketone		
		(ii) Aldehyde		CO3
		(iii) Alkene		
		(iv) ester		
	c	State True/False	1	
		Nitrous acid is used as catalyst for the esterification of carboxylic acid and		CO3
		alcohol?		
Q 5	a	Chloro ethane reacts with X to form diethyl ether. What is X?	2	
		(i) NaOH		
		(ii) C_2H_5ONa		CO3
		(iii) H_2SO_4		
		(iv) $Na_2S_2O_3$	2	
	b	Select the acetylating agent		
		(i) CH₃COCl		900
		(ii) (CH ₃ CO) ₂ O		CO3
		(iii) Both		
		(iv) None		
	c	State True/False	1	CO3
0.1		C ₂ H ₅ OH will not give iodoform test.		
Q 6	A	The most convenient method to prepare primary amine containing one carbon	2	
		atom less is		
		(i) Gabriel phthalmidie synthesis		CO3
		(ii) Reduction of nitroalkanes		
		(iii) Hofmann bromamide reaction		
		(iv) Reduction of cyanides		
	b	Acetone can be reduced to propane in the presence of	2	
		(i) Ni/Pt		COS
		(ii) Zn-Hg/conc. HCl		CO3
		(iii) LiAlH4		
	_	(iv) All	1	
	c	State True/False	1	CO3

	LiAlH ₄ does not reduce CH ₂ =CH ₂ .				
SECTION B					
Q 1	Give reasons: a. n-heptane has higher melting point than n-octane. b. Acetyl chloride is more reactive than acetic acid. c. Acetamide is less basic than ethyl amine.	3+3+4	CO1		
Q 2	Complete the reactions with mechanism:	10	CO2		
Q 3	What happens when a. Glycerol reacts with oxalic acid b. Phthalic anhydride reacts with phenol in the presence of conc. H ₂ SO ₄ . c. Acetamide is heated with Br ₂ and aqueous KOH.	4+4+2	СОЗ		
Q 4	Write down the mechanism of the following reactions: a. Allyl phenyl ether is heated at 200°C. b. Benzaldehyde reacts with acetic anhydride in the presence of sodium acetate.	10	CO2		
Q 5	State Huckel rule and classify the following species into aromatic or antiaromatic a. b. c.	10	CO1		

d. 6	e. f. H								
SECTION C									
(i) (ii) (iii) (iv) (v)	Ethyl chloride to acrylic acid Ethane to succinic anhydride Etnyl amine to n-propyl amine	20 7+7+6	CO3						