Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, Jan 2021

Course: Advanced Inorganic Chemistry

Semester: I Programme: M. Sc. Chemistry Time: 3 hours

Course Code: CHEM7017 Max. Marks: 100

SECTION A

1. Each Question will carry 5 Marks

2. Instruction: Complete the statement / Select the correct answer(s)

S. No.	Question	Marks	CO
Q 1	How many metal-metal bonds will be present for the following complexes (i) Re ₂ Cl ₈ (ii) Fe ₃ (CO) ₁₂	5	CO3
Q 2	Write the ground state term symbols and possible number of microstates for d^3 and p^2	5	CO1
Q 3	For Ferrocene mention true/false (i) Undergoes Mannich reaction (ii) Chloromercuration occurs when reacts with Hg(OAc) ₂ and LiCl (iii)Acetylation is not possible	5	CO3
Q 4	What is Hapticity? Give one example of sandwich complex follows 18-electrin rule	5	CO3
Q 5	Mention the IR stretching frequencies range of carbonyls in metal complexes i) Terminal. ii) µ ₂ bridged iii) µ ₃ bridged	5	CO2
Q 6	Calculate the spin only magnetic moments and CFSE values of the following ions: (i) [MnCl ₆] ³⁻ (ii) [Fe(CN) ₆] ³⁻ .	5	CO1
	SECTION B n question will carry 10 marks cuction: Write short / brief notes		
Q 1	Explain magnetic behavior of $Fe(H_2O_6)^{2+}$ with the help of Molecular orbital diagram	10	CO1
Q 2	Plot Orgel energy level diagrams for d ² , d ³ , d ⁴ , and d ¹ systems	10	CO2
Q 3	Explain Marcus-Husch theory for redox reactions occurs in metal complexes	10	CO3

Q 4	Write mechanisms for inner-sphere or outer-sphere one and two -electron-transfer reactions with examples.	10	CO2		
Q 5	Explain migratory insertion mechanism when (OC) ₅ Mn—CH ₃ reacts with CO	10	CO3		
Section C 1. Each Question carries 20 Marks. 2. Instruction: Write long answer.					
Q 1	a) Discuss briefly about different classes of Boranes OR Explain the equations of balance, which provides relation between Boron hydride (BH)p Hq and the kind of bonds.	10			
	b) Calculate the all possible s t y x numbers for B_6H_{10} OR Plot the structures for B_4H_{10} , B_5H_{11} with s t y x numbers (4 0 1 2) and (3 2 0 3) respectively	10	CO4		