Name	:		
Enrolment No:		UNIVERSITY WITH A PURPOSE	
	ΙΙΝΙνερςιτν οε ρετρ	ROLEUM AND ENERGY STUDIES	
		tion (Online Mode), January 2021	
Cours	se: Advanced Physical Chemistry	Semester: I	
Progr	:am: MSc Chemistry	Time: 3 hrs	
Cours	se Code: CHEM7016	Max. Marks: 100	
	SECI	TION - A 6 x 5 = 30 Marks	
	ch Question will carry 5 Marks		
		/ Select the correct and type answer(s)	001
Q 1		s 1897.8 kJ. How much useful work can	CO1
	be done by the engine which work $(a) = 508.7 \text{ kJ}$		
	(a) 508.7 kJ	(c) 948.9 kJ	
0.0	(b) 1897.8 kJ	(d) 254.3 kJ	C01
Q 2	Ether boils at 33.5 °C at one atmosphere pressure. At what temperature will it boil at a pressure of 750 mm, given that the heat of vaporization of ether		
	is 369.86 joules per gram.	ven that the heat of vaporization of ether	
	(a) 33.5 °C	(c) 100 °C	
	(b) 32.9 °C	(d) 273 °C	
Q 3	A first order reaction is one-fifth completed in 40 minutes. Calculate the		
	time required for its 100% comple		
	(a) 200 minutes	(c) 40 minutes	
	(b) 100 minutes	(d) infinite	
Q 4	The $t_{1/2}$ of a reaction is halved as the initial concentration of the reactant is		CO1
	doubled. What is the order of the n		
	(a) First order	(c) third order	
	(b) Second order	(d) zero order	
Q 5	The minimum uncertainty in the momentum of a 4He atom confined to 0.40		CO1
	nm will be	25	
	(a) $2.02 \times 10^{-25} \text{ kg m/s}$	(b) $2.53 \times 10^{-25} \text{ kg m/s}$	
	(c) 2.64 X 10 ⁻²⁵ kg m/s	(d) 2.89 X 10 ⁻²⁵ kg m/s	
Q 6	The function Cos ax is an eigen function of which of the following		CO2
	operators		
	(a) d/dx	(b) d^2/dx^2	
	(c) Both of these	(d) None of these.	
	SECT	ION – B 10 x 5 = 50 Marks	

Q 7	The free energy change (ΔG) accompanying a given process is -85.77 kJ at 25 °C and -83.68 kJ at 35 °C. Calculate the change in enthalpy (ΔH) for the process at 30 °C.	CO1
Q 8	Consider the following cell:	
	$Ag(s), Ag^+ (a=0.001 m) II Ag^+ (c=0.1 m, a unknown), Ag(s) m$	
	Its EMF at 25 °C is +0.1110V. (a) Write the cell reaction, and (b) Calculate	
	the activity coefficient of the Ag^+ ion in 0.1 <i>m</i> solution.	
Q 9	Find the degree of dissociation of HF in 1M aqueous solution. The value of	CO2
	K for the ionic equilibrium HF \rightleftharpoons H ⁺ + F ⁻ is 7.2 x 10 ⁻⁴ .	
Q10	Derive an expression for the operator $\left(\frac{d}{dx} + x\right)^2 \Psi(x)$	CO2
Q 11	Apply quantum mechanical principles to calculate the coefficients of atomic	CO3
Q II	orbitals in sp^2 hybrid orbitals and write their wave functions.	005
	OR	
	The pure rotational spectrum of gaseous HCl contains a series of equally	
	spaced lines separated by 20.80 cm^{-1} . Calculate the internuclear distance of	
	the molecule. The atomic masses of H and Cl are 1.673×10^{-27} kg and 58.06	
	x 10^{-27} kg respectively.	
	Section - C 1 x 20 = 20 Marl	٤S
1. Eac	h Question carries 20 Marks.	
2. Inst	truction: Write long answers /upload file.	
Q 12	(a) The vapor pressure of liquid mercury at 433 K is 4.19 mmHg.	CO3
	Calculate the free energy change accompanying the expansion of one	
	mole of mercury vapor in equilibrium with liquid at 433 K to a	
	pressure of 1 atm at the same temperature assuming the vapor behaves	CO3
	like an ideal monoatomic gas.	
	OR	CO3
	Calculate the activation energy of a reaction whose rate constant is	
	tripled by a 10 °C rise in temperature in the vicinity of 27 °C.	CO3
	(b) For the first-order isomerization of an organic compound at 130 °C,	
	the activation energy is $108.4 \text{ kJ mol}^{-1}$ and the rate constant is 9.12 x	
	10^{-4} s ⁻¹ . Calculate the standard entropy of activation for this reaction.	
	OR	
	Describe the Lindemann theory of unimolecular reactions.	