		UPES In with a purpose	
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES		
	End Semester Examination, January 2021		
Programme Name: B.Sc. (Hons.) Physics , B.Sc.(Hons.) Chemistry Semester : I			
	Course Name: MatricesTime: 3 Hrs		
Course			
1105.01	page(s) : 2		
	Section-A		
	Each question will carry 5 Marks. 2. Select correct answer in each question. 3. All Questions	of this	
S. No.	section are compulsory.	СО	
Q1	If A and B are Hermitian matrices, then $AB - BA$ is		
x -	A. Hermitian		
	B. Skew Hermitian Matrix	C01	
	C. Unitary Matrix	001	
	D. None of the above		
Q2	[3 1 7]		
	Rank of the matrix $ \begin{bmatrix} 3 & 1 & 7 \\ 1 & 2 & 4 \\ 4 & -1 & 7 \\ 2 & 1 & 5 \end{bmatrix} $ is		
	$\begin{vmatrix} 4 & -1 & 7 \\ 2 & 1 & 5 \end{vmatrix}$	CO2	
01	A. 1 B.2 C.3 D.4		
Q3	The value of λ for which the following equations will have a non-trivial solution is: $x + 2y + 3z = \lambda x$		
	$2x + 3y + z = \lambda x$		
	$3x + y + 2z = \lambda y$	CO2	
	A. 4 B. Not equal to 4		
	C. 6		
0.4	D. Not equal to 6		
Q4	The value of k for which the vectors $(1, -2, k)$, $(2, -1, 5)$ and $(3, -5, 7k)$ are linearly dependent is: A. 5/14		
	B. 2/13	CO3	
	C. 5/12		
Q5	D. 0 [1 2 2]		
X~	The eigenvalues of the matrix $\begin{bmatrix} 1 & 2 & 2 \\ 0 & 2 & 1 \\ -1 & 2 & 2 \end{bmatrix}$ are:		
	L-1 2 2] A. 1,2,2	CO4	
	B. 0,2,3	004	
	C. 1,1,3		
Q6	D. 0,0,5 The matrix A whose eigenvalues are 2,2,4 and eigenvectors are (-2,1,0)', (-1,0,1)',(1,0,1)' is		
γu	The matrix Λ whose eigenvalues are 2,2,4 and eigenvectors are (-2,1,0), (-1,0,1), (1,0,1) is		
	$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 4 \end{bmatrix} \qquad \begin{bmatrix} 3 & 2 & 1 \\ 2 & 2 & 2 \end{bmatrix} \qquad \begin{bmatrix} 3 & 2 & 3 \\ 1 & 2 & 4 \end{bmatrix} \qquad \begin{bmatrix} 3 & 2 & 1 \\ 2 & 2 & 4 \end{bmatrix}$	CO4	
	A. $\begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 7 & 2 & 4 \end{bmatrix}$ B. $\begin{bmatrix} 3 & 2 & 1 \\ 2 & 2 & 2 \\ 1 & 2 & 3 \end{bmatrix}$ C. $\begin{bmatrix} 3 & 2 & 3 \\ 1 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix}$ D. $\begin{bmatrix} 3 & 2 & 1 \\ 0 & 2 & 0 \\ 1 & 2 & 3 \end{bmatrix}$		

	Section-B	
1.	Each question will carry 10 Marks. All Questions of this section are compulsory. In Question 5	, there
	is an internal choice.	

S. No.		CO
D. 140.		
Q1	Check for consistency and if possible, solve the following system of equations by Gauss	
	elimination method:	CO2
	4x - 3y - 9z + 6w = 0	00
	2x + 3y + 3z + 6w = 6	
	4x - 21y - 39z - 6w = -24	
Q2	Solve the following system of equations using the Choleski LU decomposition method:	
	4x - y - z = 3	CO3
	-x + 4y - 3z = -1/2	
	-x - 3y + 5z = 0	
Q3	Find the algebraic and geometric multiplicity of all eigenvalues of the following matrix:	
	$\begin{bmatrix} -3 & -7 & -5 \\ 2 & 4 & 3 \\ 1 & 2 & 2 \end{bmatrix}$	CO4
Q4	Find the characteristic and minimal polynomials of the following matrix: $A = \begin{bmatrix} 2 & 5 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 4 & 2 & 0 \\ 0 & 0 & 3 & 5 & 0 \\ 0 & 0 & 0 & 7 \end{bmatrix}$	CO5
Q5	Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} a & h & g \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$. OR Show that for any square matrix A, the product of all eigenvalues of A is equal to determinant of A.	CO4
	Section-C	
1. 7	Section-C The question will carry 20 Marks. 2. Choose one question from two options.	
S. No.		CO

Q1	Find the modal matrix P and show that it diagonalizes the matrix $A = \begin{bmatrix} 3 & 1 & -1 \\ -2 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$ by similarity	
	transformation $P^{-1}AP$. OR Find A^n (<i>n</i> is a positive integer) using Cayley Hamilton's theorem given that $A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -1 \\ 0 & 0 & 3 \end{bmatrix}$.	CO4