Name: Enrolment No:		UPES	
LIIIOII	Enrolment NO: UNIVERSITY WITH A PURPOSE		
		LEUM AND ENERGY STUDIES	
		on (Online Mode), January 2021	
	se: Chemistry I (common paper)		
-		ical, Civil, FSE, Mechanical, Mechatronics	•
Cours	se Code: CHEM-1011	Time: 3	hr
Max.	Marks: 100		
	SECTION - A	6 x 5 = 30 Marks	
	h Question will carry 5 Marks	elect the convect ensurer(s)	
2. Inst	ruction: Complete the statement / S A : In the reaction $2A + B \rightarrow A_2B$ if t	he concentration of A is doubled and	CO2
	that of B is halved, then the rate of		002
	,		
	(a) increase 2 times		
	(b) increase 4 times		
	(c) decrease 2 times		
	(d) remain the same		
	B: A substance 'A' decomposes by a	a first-order reaction starting initially	
	B: A substance 'A' decomposes by a first-order reaction starting initially with [A] = 2.00M and after 200min, [A] becomes 0.15M. For this reaction		
	t1/2 is?		
	(a) 46.45 min		
	(b) 50.49 min		
	(c) 48.45 min		
	(d) 53.72 min		
Q 2	A: Consider the Arrhenius equation	given below and mark the correct	CO2
	option.		
	k = A e ⁻¹	Ea/RT	
	(a) Pata constant increases	when on tially with increasing activation	
	energy and decreasing te	exponentially with increasing activation	
		exponentially with increasing	
	activation energy and de		
	activation energy and de	exponentially with decreasing	
	activation energy and de	נו במאווא נפוווףפומנעו פ.	

	(d) Rate constant increases exponentially with decreasing activation energy and increasing temperature	
	B: Which of the following observations is incorrect about the order of a reaction?	
	 (a) Order of a reaction is always a whole number (b) The stoichiometric coefficient of the reactants doesn't affect the order (c) Order of reaction is the sum of power to express the rate of 	
	(d) Order can only be assessed experimentally	
Q 3	A: Acetic acid is weak acid than sulphuric acid because which of the following reasons?	CO1
	a) It decomposes on increasing temperatureb) It has less degree of ionization	
	c) It has -COOH group d) It has more inductive effect	
	B: Which among the following is not a property of aromatic	
	hydrocarbon?	
	a) These compounds have very good aromaticity	
	b) These compounds have excellent stability	
	c) These compounds do not undergo nucleophilic substitutions but they	
	undergo electrophilic substitutions	
	d) There exists a strong ratio between carbon and hydrogen	
Q 4	 Give reasons: (i) Bulk polymerization sometimes leads to explosion. (ii) Elemental composition of polymers formed by condensation polymerization is different from monomers. (iii) Polyvinyl chloride pipes are preferred to make electrical fittings. (iv) Vulcanization of rubber is required. (v) PMMA is used for making contact lenses. 	CO5
Q 5	A: A conductivity cell when filled with 0.01M KCl solution has a resistance of 747.5 ohm at 25°C. When the same cell was filled with an aqueous solution of 0.05M CaCl ₂ solution the resistance was 876 ohm. Calculate (i) Conductivity of the solution	CO3

	(ii) Molar conductivity of the solution (given conductivity of 0.01M KCl = 0.14114 Sm ⁻¹) (a) Conductivity = 0.1204 Sm ⁻¹ ; Molar Conductivity = 0.00241 Sm ² mol ⁻¹ (b) Conductivity = 0.2104 Sm ⁻¹ ; Molar Conductivity = 0.0241 Sm ² mol ⁻¹ (c) Conductivity = 0.1204 Sm ⁻¹ ; Molar Conductivity = 0.01240 Sm ² mol (d) Conductivity = 0.4201 Sm ⁻¹ ; Molar Conductivity = 0.00421 Sm ² mol ⁻¹ B: Calculate the emf of the cell in which the following reaction takes Place Ni _(s) + 2 Ag ⁺ ($0.002M$) \rightarrow Ni ²⁺ ($0.160M$) + 2Ag _(s) (a) 0.914 V (b) 0.419 V (c) 0.149 V	
	(d) 0. 194 V	
Q 6	 Explain: (i) Hot lime-soda process is better than cold lime-soda process. (1 mark) (ii) Demineralization process is preferred over zeolite process. (1 mark) (iii) Why is it conventional to express hardness of water in terms of CaCO₃ equivalent at the International level? (3 marks) 	CO4
	SECTION – B 10 x 5 = 50 Marks	
2. Inst	h question will carry 10 marks ruction: Write short / brief notes	602
Q 1	The effect of adding N_2O_5 to the reaction	CO2
	NOCI + $O_3 \longrightarrow NO_2CI + O_2$	
	Was studied and the mechanism proposed is	
	$N_2O_5 \xrightarrow{k_1} NO_2 + NO_3$	
	$NO_3 + NO_2 \xrightarrow{k_2} N_2O_5$	
	$NO_2 + O_3 \xrightarrow{k_3} NO_3 + O_2$	
	NOCI + NO ₃ \rightarrow NO ₂ CI + NO ₂	
	Show that it leads to	
	$-\frac{d[\text{NOCl}]}{dt} = \left(\frac{k_1 k_3 k_4}{k_2}\right)^{1/2} [NOCl]^{1/2} [O_3]^{1/2} [N_2 O_5]^{1/2}$	
Q 2	 A. Discuss the construction and cell reactions of Daniel cell. Explain with proper illustrations. B. Calculate the concentration of Ni²⁺ in the given cell Ni Ni²⁺ (x) Cu²⁺(0.8 M) Cu 	CO3
	Given that $E_{cell} = 0.6 V$; $E^{\circ}Ni^{2+}/Ni = -0.251 V$; $E^{\circ}Cu^{2+}/Cu = 0.3 V$	

Q 3	A: A sample of water contains following impurities: $Mg(HCO_3)_2 = 146 mg/L$, CaCl ₂ = 111 mg/L, MgSO ₄ = 240 mg/L, Ca(NO ₃) ₂ = 82 mg/L. Calculate the quantity of lime (74% pure) and soda (90% pure) needed for softening 2000 L of water.	CO4
	B: A 100 ml sample of water required 27 ml of 0.01 M EDTA solution for titration using Erichrome Black T as indicator. Another 200 ml of water from the same source was boiled and precipitate removed by filtration. The filtrate required 12 ml of 0.01M EDTA for titration. Calculate total hardness, permanent hardness and temporary hardness of water sample.	
Q 4	A: Derive rate for Lindemann reactions mechanism for unimolecular reactions.	CO2
	B: The degree of dissociation of PCl_5 into PCl_3 and Cl_2 at one atmosphere and 40°C is 0.310. Calculate its Kp at 40°C. Also, calculate the degree of dissociation of PCl_5 , if the reaction occurs at 10 atm pressure and at same temperature.	
Q 5	A: Mention any three classification of polymers with details.	CO5
	B: Explain the synthesis of nanoparticles using reverse microemulsion method.	
	Section – C 1 x 20 = 20 Marks	
	swer any One Question. Each Question carries 20 Marks. truction: Write long answer.	
Q 1	A: Differentiate cold and hot lime soda method for softening of water. Use	CO4,5
	 proper illustrations and chemical reactions. B: A water sample has no phenolphthalein alkalinity. The 100 ml of water sample requires 16.9 ml of 0.02 N HCl with methyl orange. Calculate the type and alkalinity present in water in ppm? C: Describe bulk and solution polymerization techniques. 	(7+7+6)
	Or	
	A: Explain zeolite method and ion exchange methods of softening of hard water.	
	B: 10000 liters of hard water made soft with zeolite required a total amount	
	of 8 liters of NaCl solution containg 150 g/lit of sodium chloride for	