Name:

**Enrolment No:** 



## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

**End Semester Examination, January 2021** 

Course: PHYSICS I Semester: I

Course Code: PHYS1020

Programme: BTech :APE UP, EC, EE, ASE, ASE+AVE

Max. Marks: 100

Total pages: 2 Time: 03 hrs.

## **Instructions:**

• All questions are compulsory (Q12 has internal choice)

• Use blank paper as rough work to solve the questions in section-A and write only the correct options (type answers, no upload)

| SECTION A |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |     |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| S. No.    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Marks | CO  |
| Q1.       | Write down the characteristics of a laser beam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5     | CO1 |
| Q2.       | Magnetization of a paramagnetic salt at temperature 300K in a magnetic field of 0.4 T (Curie's constant is $3 \times 10^{-3}$ K) is (a) $3.5 \text{ A/m}$ (b) $(3.2 \text{ A/m})$ (c) $3.6 \text{ A/m}$ (d) $3.8 \text{ A/m}$                                                                                                                                                                                                                                                                                                                                                                     | 5     | CO2 |
| Q3.       | The Displacement current density $\overrightarrow{J_d}$ from the given electric field, $\overrightarrow{E} = E_0 Sin (kx - 10^{12}t)\hat{\jmath}$ associated with an electromagnetic wave travelling through a medium of relative dielectric permittivity 2 will be  (a) $\overrightarrow{J_d} = 17.7 \ E_0 Cos (kx - 10^{12}t)\hat{\jmath} A/m^2$ (b) ) $\overrightarrow{J_d} = 1.77 \ E_0 Cos (kx - 10^{12}t)\hat{\jmath} A/m^2$ (c) ) $\overrightarrow{J_d} = 177 \ E_0 Cos (kx - 10^{12}t)\hat{\jmath} A/m^2$ (d) ) $\overrightarrow{J_d} = 17.7 \ E_0 Sin (kx - 10^{12}t)\hat{\jmath} A/m^2$ | 5     | CO2 |
| Q4.       | Choose the correct normalization constant N for $\Psi(x) = Ne^{-x^2/a^2}$ as  (a) $N = \sqrt{\frac{1}{2a\pi}}$ (b) $N = \sqrt{\frac{1}{a\sqrt{2\pi}}}$ (c) $N = \sqrt{\frac{1}{a}\sqrt{\frac{2}{\pi}}}$ (d) $N = \sqrt{\frac{1}{2a\sqrt{\pi}}}$                                                                                                                                                                                                                                                                                                                                                   | 5     | CO3 |
| Q5.       | A plane with Miller indices of [102] cuts the crystal axes X, Y, Z with the intercepts of a, b, c. The correct intercepts are (a) $(2, \infty, 1)$ (b) $(1, \infty, 2)$ (c) $(\infty, 1, 2)$ (d) $(\infty, 2, 1)$                                                                                                                                                                                                                                                                                                                                                                                 | 5     | CO4 |
| Q6.       | Choose the correct ratio of atomic radius (r) to lattice constant (a) of a BCC crystal as (a) $r/a = \sqrt{3/18}$ (b) $r/a = \sqrt{3/8}$ (c) $r/a = \sqrt{3/4}$ (d) $r/a = \sqrt{3/16}$                                                                                                                                                                                                                                                                                                                                                                                                           | 5     | CO4 |

| SECTION B |                                                                                                                                                                                                             |    |     |  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|--|
| Q7.       | Describe construction and working of He-Ne laser.                                                                                                                                                           | 10 | CO1 |  |
| Q8.       | Deduce relation between Einstein A and B coefficients describing the processes of absorption, spontaneous emission, and stimulated emission.                                                                | 10 | CO1 |  |
| Q9.       | Prove that an electromagnetic wave propagating in free space follows $\vec{k} \times \vec{E} = \omega \vec{B}$ (you may consider, $\vec{E}$ along X, $\vec{B}$ along Y and propagation along Z directions). | 10 | CO2 |  |
| Q10.      | Give the construction and working of a Solar Cell.                                                                                                                                                          | 10 | CO3 |  |
| Q11.      | What is Atomic Packing Fraction (APF)? Obtain APF for FCC crystal.                                                                                                                                          | 10 | CO4 |  |
|           | SECTION-C                                                                                                                                                                                                   |    |     |  |
| Q12.      | (a) Derive Schrodinger time independent wave equation.                                                                                                                                                      | 10 | CO3 |  |
|           | (b) Find the probability of finding a particle trapped in a 1D box of length L between L/4 to L/2 using ground state wave function.                                                                         | 10 | CO3 |  |
|           | OR                                                                                                                                                                                                          |    |     |  |
|           | (a) Derive the expression for Compton shift.                                                                                                                                                                | 10 | CO3 |  |
|           | (b) Calculate minimum uncertainty in its position if an electron moves with a speed of 0.02c. Maximum uncertainty in speed = 0.01%.                                                                         | 10 | CO3 |  |

Physical constants:  $h = 6.63 \times 10^{-34} J - s$ ,  $c = 3 \times 10^8 m/s$ ,  $k_B = 1.38 \times 10^{-23} J/K$ ,  $\mu_0 = 4\pi \times 10^{-7} H/m$  $\varepsilon_0 = 8.854 \times 10^{-12} F/m$ , mass of proton= 1.6726 x  $10^{-27}$  Kg