Name: Enrolment No:	

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, January 2021

Course: PHYSICS I

Semester: I
Course Code: PHYS1020
Programme: BTech :APE UP, EC, EE, ASE, ASE+AVE
Total pages: 2
Max. Marks: 100
Time: 03 hrs.

Instructions:

- All questions are compulsory (Q12 has internal choice)
- Use blank paper as rough work to solve the questions in section-A and write only the correct options (type answers, no upload)

SECTION A			
S. No.		Marks	CO
Q1.	Write down the characteristics of a laser beam	5	CO1
Q2.	Magnetization of a paramagnetic salt at temperature 300 K in a magnetic field of 0.4 T (Curie's constant is $3 \times 10^{-3} \mathrm{~K}$) is (a) $3.5 \mathrm{~A} / \mathrm{m}$ (b) $(3.2 \mathrm{~A} / \mathrm{m})$ (c) $3.6 \mathrm{~A} / \mathrm{m}$ (d) $3.8 \mathrm{~A} / \mathrm{m}$	5	CO2
Q3.	The Displacement current density $\overrightarrow{\boldsymbol{J}_{\boldsymbol{d}}}$ from the given electric field, $\vec{E}=\boldsymbol{E}_{\mathbf{0}} \boldsymbol{\operatorname { S i n }}(\boldsymbol{k} \boldsymbol{x}-$ $\left.\mathbf{1 0}^{\mathbf{1 2}} \boldsymbol{t}\right) \hat{\boldsymbol{\jmath}}$ associated with an electromagnetic wave travelling through a medium of relative dielectric permittivity 2 will be (a) $\overrightarrow{\boldsymbol{J}_{\boldsymbol{d}}}=17.7 \boldsymbol{E}_{\mathbf{0}} \boldsymbol{C o s}\left(\boldsymbol{k} \boldsymbol{x}-\mathbf{1 0}^{\mathbf{1 2}} \boldsymbol{t}\right) \hat{\boldsymbol{\jmath}} A / \mathrm{m}^{2}$ b)) $\overrightarrow{\boldsymbol{J}_{\boldsymbol{d}}}=1.77 \boldsymbol{E}_{\mathbf{0}} \boldsymbol{C o s}\left(\boldsymbol{k} \boldsymbol{x}-\mathbf{1 0}^{\mathbf{1 2} \boldsymbol{t}) \hat{\boldsymbol{\jmath}} A / \mathrm{m}^{2} .}\right.$ (c)) $\overrightarrow{\boldsymbol{J}_{\boldsymbol{d}}}=177 \boldsymbol{E}_{\mathbf{0}} \boldsymbol{C o s}\left(\boldsymbol{k} \boldsymbol{x}-\mathbf{1 0}^{\mathbf{1 2}} \boldsymbol{t}\right) \hat{\boldsymbol{\jmath}} A / \mathrm{m}^{2}$ (d)) $\overrightarrow{\boldsymbol{J}_{\boldsymbol{d}}}=17.7 \boldsymbol{E}_{0} \operatorname{Sin}\left(\boldsymbol{k} \boldsymbol{x}-\mathbf{1 0}^{\mathbf{1 2}} \boldsymbol{t}\right) \hat{\jmath} A / \mathrm{m}^{2}$	5	CO2
Q4.	Choose the correct normalization constant N for $\Psi(x)=N e^{-x^{2} / a^{2}}$ as (a) $N=\sqrt{\frac{1}{2 a \pi}}$ (b) $N=\sqrt{\frac{1}{a \sqrt{2 \pi}}}$ (c) $\quad N=\sqrt{\frac{1}{a} \sqrt{\frac{2}{\pi}}}$ (d) $N=\sqrt{\frac{1}{2 a \sqrt{\pi}}}$	5	CO3
Q5.	A plane with Miller indices of [102] cuts the crystal axes X, Y, Z with the intercepts of $\mathrm{a}, \mathrm{b}, \mathrm{c}$. The correct intercepts are (a) $(2, \infty, 1)$ (b) $(1, \infty, 2)$ (c) $(\infty, 1,2)$ (d) $(\infty, 2,1)$	5	CO4
Q6.	Choose the correct ratio of atomic radius (r) to lattice constant (a) of a BCC crystal as (a) $r / a=\sqrt{3 / 18}$ (b) $r / a=\sqrt{3 / 8}$ (c) $r / a=\sqrt{3 / 4}$ (d) $r / a=\sqrt{3 / 16}$	5	CO4

SECTION B			
Q7.	Describe construction and working of He-Ne laser.	10	CO1
Q8.	Deduce relation between Einstein A and B coefficients describing the processes of absorption, spontaneous emission, and stimulated emission.	10	CO1
Q9.	Prove that an electromagnetic wave propagating in free space follows $\vec{k} \times \vec{E}=\omega \vec{B}$ (you may consider, \vec{E} along X, \vec{B} along Y and propagation along Z directions).	10	CO2
Q10.	Give the construction and working of a Solar Cell.	10	CO3
Q11.	What is Atomic Packing Fraction (APF)? Obtain APF for FCC crystal.	10	CO 4
SECTION-C			
Q12.	(a) Derive Schrodinger time independent wave equation. (b) Find the probability of finding a particle trapped in a 1 D box of length L between $\mathrm{L} / 4$ to $\mathrm{L} / 2$ using ground state wave function. OR (a) Derive the expression for Compton shift. (b) Calculate minimum uncertainty in its position if an electron moves with a speed of 0.02 c . Maximum uncertainty in speed $=0.01 \%$.	10 10 10 10	$\begin{aligned} & \mathrm{CO} \\ & \mathrm{CO} \\ & \mathrm{CO} \\ & \mathrm{CO} \end{aligned}$
Physical constants: $h=6.63 \times 10^{-34} \mathrm{~J}-s, c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}, k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}, \mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$ $\varepsilon_{0}=8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m}$, mass of proton $=1.6726 \times 10^{-27} \mathrm{Kg}$			

