Name:
Enrollment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES
 End Semester Examination, January 2021

Programme Name: B. Tech. (All SOE)
Semester : I
Course Name : Mathematics I
Time : 03 hrs
Course Code: MATH 1026

Section A(All questions are compulsory, each question is of $\mathbf{5}$ marks)		
1.	The Fourier cosine series for an even function $f(x)$ is given by $f(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n x)$ The value of the coefficient a_{2} for the function $f(x)=\cos ^{2}(x)$ in $[0, \pi]$ is A. 0 B. 0.5 C. -0.5 D. 1	CO4
2.	For a matrix A of order 2×2, which is FALSE? A. $\operatorname{det}(A)=0 \Rightarrow \operatorname{Rank}(A) \neq 2$. B. $\operatorname{det}\left(A^{-1}\right) \neq 0 \Rightarrow \operatorname{Rank}(A)=2$. C. $\operatorname{det}\left(A^{-1}\right)=1 \Rightarrow \operatorname{Rank}(A)=1$. D. $\operatorname{det}\left(A^{-1}\right)=2 \Rightarrow \operatorname{Rank}(A)=2$.	CO1
3.	Which of the following is not Dirichlet's condition for the Fourier series expansion of function $f(x)$? A. $f(x)$ is periodic, single valued, finite B. $f(x)$ has finite number of discontinuities C. $f(x)$ has finite number of maxima and minima D. $f(x)$ has infinite number of discontinuities	CO4
4.	If the vector function $\vec{F}=\left(3 y-p_{1} z\right) \hat{i}+\left(p_{2} x-2 z\right) \hat{j}+\left(p_{3} y+z\right) \hat{k}$ is irrotational, then the values of the constants p_{1}, p_{2}, p_{3} respectively, are A. $0.3,-2.5,0$ B. $0,3,2$ C. $0,0.33,0.5$ D. $4,3,2$	$\mathrm{CO3}$
5.	The Fourier series of the function $f(x)=\sin ^{2} x$ is A. $\sin x+\sin 2 x$ B. $1-\cos 2 x$ C. $\sin 2 x+\cos 2 x$ D. $0.5-0.5 \cos 2 x$	CO4

6.	The function $f(x, y)=x^{2} y-3 x y+2 y+x$ has A. No local extremum B. One local maximum but no local minimum C. One local minimum but no local maximum D. One local maximum and one local minimum	$\mathrm{CO2}$
SECTION B (All questions are compulsory and Q11 has internal choices, each question is of $\mathbf{1 0}$ marks)		
7.	Find the directional derivatives of $x^{2} y^{2} z^{2}$ at the point $(1,1,-1)$ in the direction of the tangent to the curve $x=e^{t}, y=\sin 2 t+1, z=1-\cos t$ at $t=0$.	$\mathrm{CO3}$
8.	Evaluate $\iint_{R} x d x d y$ over the region bounded by $y^{2}=x$ and the lines $x+y=2, x=0$ and $x=1$.	CO2
9.	A vector field is given by $\vec{F}=\sin y \hat{\imath}+x(1+\cos y) \hat{\jmath}$. Evaluate the line integral over a circular path $x^{2}+y^{2}=a^{2}, z=0$.	$\mathrm{CO3}$
10.	If $u=\tan ^{-1} \frac{x^{3}+y^{3}}{x-y}$, show that $x^{2} u_{x x}+2 x y u_{x y}+y^{2} u_{y y}=\left(1-4 \sin ^{2} u\right) \sin 2 u$.	CO2
11.	Find the Fourier series representing $f(x)=x \sin x, 0<x<2 \pi$ OR Given that $f(x)=x+x^{2}$ for $-\pi<x<\pi$, find the Fourier expression of $\mathrm{f}(\mathrm{x})$. Deduce that $\frac{\pi^{2}}{6}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\ldots \ldots . .$.	$\mathrm{CO4}$
SECTION C (Q12 is of $\mathbf{2 0}$ marks and it has internal choices)		
12	Suppose $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ is a matrix with real entries with $a_{12} \neq 0, a_{21} \neq 0$. Prove that a. If A has repeated eigenvalues then $\operatorname{det}(A)$ is non-negative. b. If a_{12} and a_{21} have same sign then A has real and distinct eigenvalues. Is the converse also true? Give suitable reason or a counterexample to support your answer. c. Take $a_{11}=a_{22}=1$ and $a_{12}=a_{21}=\epsilon>0$. If $\lambda_{\max }$ and $\lambda_{\min }$, respectively are the largest and smallest eigenvalues of A then find $\lim _{\epsilon \rightarrow 0^{+}} \frac{\lambda_{\text {max }}}{\lambda_{\text {min }}}$. OR Suppose $0 \leq \alpha \leq 2 \pi, 0 \leq \beta \leq 2 \pi, 0 \leq \gamma \leq 2 \pi$. Find the number of solutions of the system $\begin{gathered} \sin \alpha+2 \cos \beta+3 \tan \gamma=0 \\ 2 \sin \alpha+5 \cos \beta+3 \tan \gamma=0 \\ -\sin \alpha-5 \cos \beta+5 \tan \gamma=0 \end{gathered}$	CO1

