Name:

Enrollment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, January 2021

Programme Name: B. Tech. (All SOE)

Course Name: Mathematics I

Course Code: MATH 1026

Semester: I

Time: 03 hrs

Max. Marks: 100

Section A (All questions are compulsory, each question is of 5 marks)				
1.	The Fourier cosine series for an even function $f(x)$ is given by $f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos(nx)$ The value of the coefficient a_2 for the function $f(x) = \cos^2(x)$ in $[0, \pi]$ is A. 0 B. 0.5 C0.5 D. 1	CO4		
2.	For a matrix A of order 2×2 , which is FALSE? A. $\det(A) = 0 \Rightarrow Rank(A) \neq 2$. B. $\det(A^{-1}) \neq 0 \Rightarrow Rank(A) = 2$. C. $\det(A^{-1}) = 1 \Rightarrow Rank(A) = 1$. D. $\det(A^{-1}) = 2 \Rightarrow Rank(A) = 2$.	CO1		
3.	 Which of the following is not Dirichlet's condition for the Fourier series expansion of function f(x)? A. f(x) is periodic, single valued, finite B. f(x) has finite number of discontinuities C. f(x) has finite number of maxima and minima D. f(x) has infinite number of discontinuities 	CO4		
4.	If the vector function $\overrightarrow{F} = (3y - p_1z) \widehat{i} + (p_2x - 2z) \widehat{j} + (p_3y + z) \widehat{k}$ is irrotational, then the values of the constants p_1, p_2, p_3 respectively, are A. $0.3, -2.5, 0$ B. $0, 3, 2$ C. $0, 0.33, 0.5$ D. $4, 3, 2$	CO3		
5.	The Fourier series of the function $f(x) = sin^2 x$ is A. $sin x + sin 2x$ B. $1 - cos 2x$ C. $sin 2x + cos 2x$ D. $0.5 - 0.5 cos 2x$	CO4		

	The function $f(x, y) = x^2y - 3xy + 2y + x$ has	
6.	 A. No local extremum B. One local maximum but no local minimum C. One local minimum but no local maximum D. One local maximum and one local minimum 	CO2
	SECTION B (All questions are compulsory and Q11 has internal choices, each question is of 10 mark	ks)
7.	Find the directional derivatives of x^2 y^2 z^2 at the point $(1, 1, -1)$ in the direction of the tangent to the curve $x = e^t$, $y = \sin 2t + 1$, $z = 1 - \cos t$ at $t = 0$.	CO3
8.	Evaluate $\iint_R x dx dy$ over the region bounded by $y^2 = x$ and the lines $x + y = 2$, $x = 0$ and $x = 1$.	CO2
9.	A vector field is given by $\vec{F} = \sin y \hat{\imath} + x(1 + \cos y) \hat{\jmath}$. Evaluate the line integral over a circular path $x^2 + y^2 = a^2$, $z = 0$.	CO3
10.	If $u = \tan^{-1} \frac{x^3 + y^3}{x - y}$, show that $x^2 u_{xx} + 2xy u_{xy} + y^2 u_{yy} = (1 - 4\sin^2 u)\sin 2u$.	CO2
11.	Find the Fourier series representing $f(x) = x \sin x, 0 < x < 2\pi$ OR Given that $f(x) = x + x^2$ for $-\pi < x < \pi$, find the Fourier expression of $f(x)$. Deduce that $\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots$	CO4
	SECTION C (Q12 is of 20 marks and it has internal choices)	
12	Suppose $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ is a matrix with real entries with $a_{12} \neq 0$, $a_{21} \neq 0$. Prove that a. If A has repeated eigenvalues then $\det(A)$ is non-negative. b. If a_{12} and a_{21} have same sign then A has real and distinct eigenvalues. Is the converse also true? Give suitable reason or a counterexample to support your answer. c. Take $a_{11} = a_{22} = 1$ and $a_{12} = a_{21} = \epsilon > 0$. If λ_{\max} and λ_{\min} , respectively are the largest and smallest eigenvalues of A then find $\lim_{\epsilon \to 0^+} \frac{\lambda_{\max}}{\lambda_{\min}}$. OR Suppose $0 \leq \alpha \leq 2\pi$, $0 \leq \beta \leq 2\pi$, $0 \leq \gamma \leq 2\pi$. Find the number of solutions of the system $\sin \alpha + 2\cos \beta + 3\tan \gamma = 0$ $2\sin \alpha + 5\cos \beta + 3\tan \gamma = 0$ $-\sin \alpha - 5\cos \beta + 5\tan \gamma = 0$	CO1