Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, January 2020

Course: Mathematical Physics - I Program: B. Sc. (H) Physics Semester: I

Course Code: PHYS 1011

Time 03 hrs. Max. Marks: 100

SECTION A

Each Question will carry 5 Marks Instruction: Complete the statement / Select the correct answer(s)/Write short answers

S. No.	Question	CO
Q1	Discuss the physical significance of curl of a vector field. What happens when the curl of a vector vanishes? (Describe in words).	CO3
Q2	The local maxima and minima of $f(x) = 3x^4 + 4x^3 - 12x^2 + 12$ are: a) $x = 0$ is local maxima and $x = 1, -2$ are local minima b) $x = -1$ is local maxima and $x = 0, -2$ are local minima c) $x = 0, -1$ are local maxima and $x = -2$ is local minima d) $x = -1, -2$ are local maxima and $x = 0$ is local minima	CO1
Q3	The solution of exact differential equation $\left(1 + e^{\frac{x}{y}}\right) + e^{x/y} \left(1 - \frac{x}{y}\right) \frac{dy}{dx} = 0$ is: a) $2x + ye^{x/y} = c$ b) $x + ye^{x/y} = c$ c) $2x - ye^{x/y} = c$ d) $x - ye^{x/y} = c$	CO3
Q4	What would be the solution of the first order linear differential equation $(x + 1)\frac{dy}{dx} - y = e^x (x + 1)^2$? a) $\frac{y}{x+1} = e^x + c$ b) $y = xe^x + c$ c) $\frac{y}{x-1} = e^{-x} + c$ d) $= xe^{-x} + c$	CO2
Q5	The area of a triangle having vertices at P(1, 3, 2), Q (2, -1, 1), R(-1, 2, 3) is: a) $\sqrt{107}$ b) $\frac{1}{2}\sqrt{107}$ c) $\sqrt{117}$ d) $\sqrt{105}$	CO1
Q6	The Wronskian of $\frac{d^2y}{dx^2} + 4y = \tan 2x$ is: a) $\sin 2x$ b) 2 c) $4\cos 2x$ d) 4	CO2

	SECTION B	
1.	Each question will carry 10 marks	
2.	Instruction: Write short / brief notes	
7	Find the solution of the following 2 nd order linear differential equation:	CO2
	$(D^2 - 4D + 4)y = 8x^2 e^x \cos 2x$	
28	Define orthogonal curvilinear coordinate system. If (u_1, u_1, u_3) is a set of curvilinear coordinates, write an expression for the arc length in this coordinate system. Derive the arc length expressions in cylindrical and spherical polar coordinates.	CO3
9	 a) Define Dirac delta function. List three important properties of Dirac delta function (4 Marks) b) Using Lagrange Multiplier's method, compute the maxima/minima of the function (6 Marks) f(x, y, z) = x² - y² 	CO1
	on the surface $x^{2} + 2y^{2} + 3z^{2} = 1$ Let $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$, and \vec{a} is a constant vector ($\vec{a} = a_{1}\hat{\imath} + a_{2}\hat{\jmath} + a_{3}\hat{k}$). Prove that	
210	Let $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$, and \vec{a} is a constant vector ($\vec{a} = a_1\hat{\imath} + a_2\hat{\jmath} + a_3\hat{k}$). Prove that $\vec{\nabla} \cdot \left(\frac{\vec{a} \times \vec{r}}{r^n}\right) = 0$	CO3
11	Show that $\vec{F} = (2xy + z^3)\hat{\imath} + x^2\hat{\jmath} + 3xz^2\hat{k}$ is a conservative force field. Find the scalar potential. If an object is moving in this field from (1,-2,1) to (3,1,4), find the work done. OR	CO4
	Find the directional derivative of A^2 , where $\vec{A} = xy^2\hat{i} + zy^2\hat{j} + xz^2\hat{k}$, at the point (2,0,3) in the direction of the outward normal to the analysis $x_1^2 + x_2^2 + z_1^2 = 14$ at the point (2,2,1)	
	the direction of the outward normal to the sphere $x^2 + y^2 + z^2 = 14$ at the point (3,2,1). Section C	
	Each Question carries 20 Marks.	
2.		
<u>9</u> 12	 a) State Gauss divergence theorem and discuss its physical significance. (5 marks) b) If F = yî + (x - 2xz)ĵ - xyk̂, evaluate ∬(∇ × F). n̂ dS where S is the surface of the sphere x² + y² + z² = a² above the xy plane (see the figure below). (15 marks) 	CO4
	$x^2 + y^2 = a^2, z = 0$	
	OR	
	 a) State Stokes' theorem and discuss its physical significance. (5 marks) b) Evaluate ∬ A · n̂ dS, where A = zî + xĵ - 3y²zk̂ and S is the surface if the cylinder x² + y² = 16 included in the first octant between z = 0 and z = 5 (see the figure below). (15 marks) 	

|--|--|