Name: Enrolment No:		
Course Progra Course	\left.UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, January 2020 $\right]$ Semester: I	
SECTION A 1. Each Question will carry 5 Marks 2. Instruction: Complete the statement / Select the correct answer(s)/Write short answers		
S. No.	Question	CO
Q1	Discuss the physical significance of curl of a vector field. What happens when the curl of a vector vanishes? (Describe in words).	$\mathrm{CO3}$
Q2	The local maxima and minima of $f(x)=3 x^{4}+4 x^{3}-12 x^{2}+12$ are: a) $x=0$ is local maxima and $x=1,-2$ are local minima b) $x=-1$ is local maxima and $x=0,-2$ are local minima c) $x=0,-1$ are local maxima and $x=-2$ is local minima d) $x=-1,-2$ are local maxima and $x=0$ is local minima	CO1
Q3	The solution of exact differential equation $\left(1+e^{\frac{x}{y}}\right)+e^{x / y}\left(1-\frac{x}{y}\right) \frac{d y}{d x}=0$ is: a) $2 x+y e^{x / y}=c$ b) $x+y e^{x / y}=c$ c) $2 x-y e^{x / y}=c$ d) $x-y e^{x / y}=c$	$\mathrm{CO3}$
Q4	What would be the solution of the first order linear differential equation $(x+1) \frac{d y}{d x}-y=$ $e^{x}(x+1)^{2}$? a) $\frac{y}{x+1}=e^{x}+c$ b) $y=x e^{x}+c$ c) $\frac{y}{x-1}=e^{-x}+c$ d) $=x e^{-x}+c$	CO2
Q5	The area of a triangle having vertices at $\mathrm{P}(1,3,2), \mathrm{Q}(2,-1,1), \mathrm{R}(-1,2,3)$ is: a) $\sqrt{107}$ b) $\frac{1}{2} \sqrt{107}$ c) $\sqrt{117}$ d) $\sqrt{105}$	CO1
Q6	The Wronskian of $\frac{d^{2} y}{d x^{2}}+4 y=\tan 2 x$ is: a) $\sin 2 x$ b) 2 c) $4 \cos 2 x$ d) 4	$\mathrm{CO2}$

SECTION B

1. Each question will carry $\mathbf{1 0}$ marks

2. Instruction: Write short / brief notes

Q7	Find the solution of the following $2^{\text {nd }}$ order linear differential equation: $\left(D^{2}-4 D+4\right) y=8 x^{2} e^{x} \cos 2 x$	CO 2
Q8	Define orthogonal curvilinear coordinate system. If (u_{1}, u_{1}, u_{3}) is a set of curvilinear coordinates, write an expression for the arc length in this coordinate system. Derive the arc length expressions in cylindrical and spherical polar coordinates.	CO3
Q9	a) Define Dirac delta function. List three important properties of Dirac delta function (4 Marks) b) Using Lagrange Multiplier's method, compute the maxima/minima of the function (6 Marks) $f(x, y, z)=x^{2}-y^{2}$ on the surface $x^{2}+2 y^{2}+3 z^{2}=1$	CO1
Q10	Let $\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$, and \vec{a} is a constant vector $\left(\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}\right)$. Prove that $\vec{\nabla} \cdot\left(\frac{\vec{a} \times \vec{r}}{r^{n}}\right)=0$	CO 3
Q11	Show that $\vec{F}=\left(2 x y+z^{3}\right) \hat{\imath}+x^{2} \hat{\jmath}+3 x z^{2} \hat{k}$ is a conservative force field. Find the scalar potential. If an object is moving in this field from $(1,-2,1)$ to $(3,1,4)$, find the work done. OR Find the directional derivative of A^{2}, where $\vec{A}=x y^{2} \hat{\imath}+z y^{2} \hat{\jmath}+x z^{2} \hat{k}$, at the point $(2,0,3)$ in the direction of the outward normal to the sphere $x^{2}+y^{2}+z^{2}=14$ at the point $(3,2,1)$.	$\mathrm{CO4}$
	Each Question carries 20 Marks. Instruction: Write long answer.	
Q12	a) State Gauss divergence theorem and discuss its physical significance. ($\mathbf{5}$ marks) b) If $\vec{F}=y \hat{\imath}+(x-2 x z) \hat{\jmath}-x y \hat{k}$, evaluate $\iint(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d S$ where S is the surface of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ above the $x y$ plane (see the figure below). ($\mathbf{1 5} \mathbf{~ m a r k s}$) OR a) State Stokes' theorem and discuss its physical significance. ($\mathbf{5}$ marks) b) Evaluate $\iint \vec{A} \cdot \hat{n} d S$, where $\vec{A}=z \hat{\imath}+x \hat{\jmath}-3 y^{2} z \hat{k}$ and S is the surface if the cylinder $x^{2}+y^{2}=16$ included in the first octant between $z=0$ and $z=5$ (see the figure below). (15 marks)	CO4

