Name: Enrollment No:



## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

## End Semester Examination, January 2021

Programme Name: B.Sc. Mathematics (Hons.) Course Name : Algebra Course Code: MATH 1032 Semester : I Time : 03 hrs Max. Marks : 100

|    | Section A<br>(All questions are compulsory)                                                                                                                                                                                                                                                                                                      |     |     |  |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|--|--|--|
| 1. | If $1, \omega, \omega^2$ are the cube roots of unity, then the roots of $(x - 1)^3 + 8 = 0$ are<br>A. $-1, 1 + 2\omega, 1 - 2\omega^2$<br>B. $-1, 1 + 2\omega, 1 + 2\omega^2$<br>C. $-1, 1 - 2\omega, 1 + 2\omega^2$<br>D. $-1, 1 - 2\omega, 1 - 2\omega^2$                                                                                      | [5] | CO1 |  |  |  |
| 2. | The function $f(x) = \frac{x}{x^2+1}$ from $\mathcal{R}$ to $\mathcal{R}$ , where $\mathcal{R}$ is the set of real numbers, is<br>A. one-one and onto<br>B. one-one but not onto<br>C. not one-one but onto<br>D. neither one-one nor onto                                                                                                       | [5] | CO2 |  |  |  |
| 3. | <ul> <li>Consider the equations of two planes x + y + z = 3 and 2x + 3y + z = 6. Choose the correct option.</li> <li>A. The planes have a unique point of intersection.</li> <li>B. The planes have a line of intersection.</li> <li>C. The planes do not intersect.</li> <li>D. The plane 2x + 3y + z = 6 passes through the origin.</li> </ul> | [5] | CO3 |  |  |  |
| 4. | The rank of the matrix $A = \begin{bmatrix} 4 & 2 & 1 & 3 \\ 6 & 3 & 4 & 7 \\ 2 & 1 & 0 & 1 \end{bmatrix}$<br>A. 1<br>B. 2<br>C. 3<br>D. 4                                                                                                                                                                                                       | [5] | CO3 |  |  |  |

## Name: Enrollment No:



| 5. | If <i>A</i> is a square matrix of order 2 having only integer entries. Then, which of the following option cannot be the characteristic polynomial of <i>A</i> ?<br>A. $\lambda^2 - 2\lambda$<br>B. $2\lambda^2 - \lambda$<br>C. $\lambda^2 - 2\lambda + 1$<br>D. $\lambda^2$           | [5]  | CO4 |  |  |  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|--|--|--|
| 6. | Which of the following mapping $T: \mathbb{R}^2 \to \mathbb{R}^2$ , where $\mathbb{R}$ is the set of real numbers, is<br>not a linear transformation.<br>A. $T(x, y) = (y, x)$<br>B. $T(x, y) = (x + y, x)$<br>C. $T(x, y) = (x + 1, y)$<br>D. $T(x, y) = (0, 0)$                       | [5]  | CO4 |  |  |  |
|    | SECTION B                                                                                                                                                                                                                                                                               |      |     |  |  |  |
|    | (Q1-Q5 are compulsory and Q5 has internal choices)                                                                                                                                                                                                                                      |      |     |  |  |  |
| 1. | Compute $z^n + \frac{1}{z^n}$ , if $z + \frac{1}{z} = \sqrt{3}$                                                                                                                                                                                                                         | [10] | CO1 |  |  |  |
| 2. | Determine all solutions in the positive integers of the following Diophantine equation:<br>18x + 5y = 48                                                                                                                                                                                | [10] | CO2 |  |  |  |
| 3. | If $A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix}$ always satisfies the matrix equation $A^3 - A^2 + A = kI$ , then<br>find the value of the constant k. Use the relation $A^3 - A^2 + A = kI$ to find $A^5$ .                                                 | [10] | CO4 |  |  |  |
| 4. | Let $T: \mathcal{R}^2 \to \mathcal{R}^3$ , where $\mathcal{R}$ is the set of real numbers, is a linear transformation, defines as<br>T(x, y) = (3x + y, 5x + 7y, x + 3y)<br>Find the matrix of the linear transformation and use the matrix to show that the transformation is one-one. | [10] | CO4 |  |  |  |

## Name: Enrollment No:



| 5. | Determine if the following homogeneous system has a nontrivial (nonzero) solution.<br>Then describe the solution set.<br>$3x_1 + 5x_2 - 4x_3 = 0$ $-3x_1 - 2x_2 + 4x_3 = 0$ $6x_1 + x_2 - 8x_3 = 0$ OR<br>Consider three vectors $v_1 = \begin{bmatrix} 3\\0\\-6 \end{bmatrix}$ , $v_2 = \begin{bmatrix} -4\\1\\7 \end{bmatrix}$ and $v_3 = \begin{bmatrix} -2\\1\\5 \end{bmatrix}$ . Determine, if $v_1, v_2$<br>and $v_3$ are linearly independent. | [10] | CO3 |  |  |  |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|--|--|--|--|
|    | SECTION C<br>(Q1 is compulsory and has an internal choices)                                                                                                                                                                                                                                                                                                                                                                                           |      |     |  |  |  |  |
|    | a. Find the inverse of following matrix using elementary row operations<br>$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{bmatrix}$ b. Let $A = \begin{bmatrix} 1 & -3 & -4 \\ -4 & 6 & -2 \\ -3 & 7 & 6 \end{bmatrix}$ and $b = \begin{bmatrix} 3 \\ 3 \\ -4 \end{bmatrix}$ . Determine whether <i>b</i> is in the column space of <i>A</i> .                                                                                        | [20] |     |  |  |  |  |
| 1  | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [20] | CO4 |  |  |  |  |
|    | <ul> <li>Let T be a function T : R<sup>3</sup> → R<sup>3</sup> by T(x, y, z) = (x - y + 2z, 2x + y, -x - 2y + 2z).</li> <li>I. Verify that T is a linear transformation</li> <li>II. If (a, b, c) is a vector in R<sup>3</sup>, what are the conditions on a, b and c that the vector be in the range of T?</li> <li>III. What are the conditions on a, b and c that the vector be in the null space of T?</li> </ul>                                 |      |     |  |  |  |  |