UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, January 2021

Programme Name: B.Sc. Mathematics (Hons.)
Course Name : Algebra
Course Code: MATH 1032

Semester : I
Time : 03 hrs
Max. Marks : 100

Section A

(All questions are compulsory)

If $1, \omega, \omega^{2}$ are the cube roots of unity, then the roots of $(x-1)^{3}+8=0$ are
A. $-1,1+2 \omega, 1-2 \omega^{2}$
1.
B. $-1,1+2 \omega, 1+2 \omega^{2}$
C. $-1,1-2 \omega, 1+2 \omega^{2}$
D. $-1,1-2 \omega, 1-2 \omega^{2}$

The function $f(x)=\frac{x}{x^{2}+1}$ from \mathcal{R} to \mathcal{R}, where \mathcal{R} is the set of real numbers, is
2.
A. one-one and onto
B. one-one but not onto
[5]
C. not one-one but onto
D. neither one-one nor onto

Consider the equations of two planes $x+y+z=3$ and $2 x+3 y+z=6$. Choose the correct option.
3.
A. The planes have a unique point of intersection.
B. The planes have a line of intersection.
C. The planes do not intersect.
D. The plane $2 x+3 y+z=6$ passes through the origin.

The rank of the matrix $A=\left[\begin{array}{llll}4 & 2 & 1 & 3 \\ 6 & 3 & 4 & 7 \\ 2 & 1 & 0 & 1\end{array}\right]$
4.
A. 1
B. 2
C. 3
D. 4

Name:
Enrollment No:

5.	If A is a square matrix of order 2 having only integer entries. Then, which of the following option cannot be the characteristic polynomial of A ? A. $\lambda^{2}-2 \lambda$ B. $2 \lambda^{2}-\lambda$ C. $\lambda^{2}-2 \lambda+1$ D. λ^{2}	[5]	CO4
6.	Which of the following mapping $T: \mathcal{R}^{2} \rightarrow \mathcal{R}^{2}$, where \mathcal{R} is the set of real numbers, is not a linear transformation. A. $T(x, y)=(y, x)$ B. $T(x, y)=(x+y, x)$ C. $T(x, y)=(x+1, y)$ D. $T(x, y)=(0,0)$	[5]	CO4
SECTION B(Q1-Q5 are compulsory and Q5 has internal choices)			
1.	Compute $z^{n}+\frac{1}{z^{n}}$, if $z+\frac{1}{z}=\sqrt{3}$	[10]	CO1
2.	Determine all solutions in the positive integers of the following Diophantine equation: $18 x+5 y=48$	[10]	CO 2
3.	If $A=\left[\begin{array}{ccc}0 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 1\end{array}\right]$ always satisfies the matrix equation $A^{3}-A^{2}+A=k I$, then find the value of the constant k. Use the relation $A^{3}-A^{2}+A=k I$ to find A^{5}.	[10]	CO4
4.	Let $T: \mathcal{R}^{2} \rightarrow \mathcal{R}^{3}$, where \mathcal{R} is the set of real numbers, is a linear transformation, defines as $T(x, y)=(3 x+y, 5 x+7 y, x+3 y)$ Find the matrix of the linear transformation and use the matrix to show that the transformation is one-one.	[10]	CO4

Determine if the following homogeneous system has a nontrivial (nonzero) solution. Then describe the solution set.

$$
\begin{gathered}
3 x_{1}+5 x_{2}-4 x_{3}=0 \\
-3 x_{1}-2 x_{2}+4 x_{3}=0 \\
6 x_{1}+x_{2}-8 x_{3}=0
\end{gathered}
$$

5.

OR

Consider three vectors $v_{1}=\left[\begin{array}{c}3 \\ 0 \\ -6\end{array}\right], v_{2}=\left[\begin{array}{c}-4 \\ 1 \\ 7\end{array}\right]$ and $v_{3}=\left[\begin{array}{c}-2 \\ 1 \\ 5\end{array}\right]$. Determine, if v_{1}, v_{2} and v_{3} are linearly independent.

SECTION C

(Q1 is compulsory and has an internal choices)

a. Find the inverse of following matrix using elementary row operations

$$
A=\left[\begin{array}{ccc}
0 & 1 & 2 \\
1 & 0 & 3 \\
4 & -3 & 8
\end{array}\right]
$$

b. Let $A=\left[\begin{array}{ccc}1 & -3 & -4 \\ -4 & 6 & -2 \\ -3 & 7 & 6\end{array}\right]$ and $b=\left[\begin{array}{c}3 \\ 3 \\ -4\end{array}\right]$. Determine whether b is in the column space of A.

1

Let T be a function $T: R^{3} \rightarrow R^{3}$ by $T(x, y, z)=(x-y+2 z, 2 x+y,-x-$ $2 y+2 z$).
I. Verify that T is a linear transformation
II. If (a, b, c) is a vector in R^{3}, what are the conditions on a, b and c that the vector be in the range of T ?
III. What are the conditions on a, b and c that the vector be in the null space of T ?

