Name: Enrollment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, January 2021

Programme Name: M.Tech Petroleum Engineering
Course Name : Applied Mathematics in Petroleum Engineering
Course Code: MATH 7001

Semester : I Time : 03 hrs Max. Marks : 100

	Section A (All questions are compulsory)					
1.	An approximate value of π is given by 3.1428571 and its true value is 3.1415926. The relative error will be approximately. A. 0.402502 B. 0.0402502 C. 0.00402502 D. 0.000402502s	[5]	CO1			
2.	Let $x = s$ be a solution of $x = g(x)$ and suppose that g has a continuous derivative in some interval J containing s. Then a sufficient condition for the fixed point iteration to converge at any point a in J is that, A. g is differentiable at a B. g is continuous at a C. $ g'(x) < 1$ in J D. $ g'(x) < a$ in J	[5]	CO3			
3.	Choose the correct approximation to the integral $\int_0^1 x^3 dx$ using Trapezoidal rule considering five intervals. A. 0.26 B. 0.25 C. 0.24 D. 0.30	[5]	CO2			
4.	Using Newton-Raphson method, choose the first iteration for a root of the function $f(x) = 3x - \cos x - 1$. Assume the first guess as $x_0 = 0.6$. A. 0.60 B. 0.6071 C. 0.5921 D. 0.6125	[5]	CO3			
5.	Find a bound on the eigenvalues of the following matrix using Gerschgorin theorem. A. 1 B. 1/2 C1/2 D. 5/6	[5]	CO4			

Name: Enrollment No:

6.	The 5-point approximation with the coefficient scheme or stencil of the Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, given by A. $u(x - h, y) + u(x, y - h) + u(x - h, y) + u(x, y - h) + u(x, y) = 0$ B. $u(x - h, y) + u(x, y - h) + u(x + h, y) + u(x, y + h) + 2u(x, y) = 0$ C. $u(x + h, y) + u(x, y + h) + u(x + h, y) + u(x, y + h) + 3u(x, y) = 0$ D. $u(x + h, y) + u(x, y + h) + u(x - h, y) + u(x, y - h) + 4u(x, y) = 0$	[5]	CO5				
SECTION B (Q1-Q5 are compulsory and Q5 has internal choices)							
1.	Use Simpson's $\frac{1}{3}$ rd rule to evaluate $\int_0^1 \frac{1}{1+x} dx$ by dividing the interval of integration into 8 equal parts. Use the evaluated value to approximate $\log_e 2$.	[10]	CO2				
2.	Compute five iterations of the bisection method to find a root between 2.74 and 2.75 of the function $x log_{10}x = 1.2$.	[10]	CO3				
3.	Compute five iterations for solving the following system of equations using Gauss- Seidel Iteration method with initial choice as $x = 0, y = 0, z = 0$ and $w = 0$ x - 0.25y - 0.25z = 50 -0.25x + y - 0.25w = 50 -0.25x + z - 0.25w = 25	[10]	CO3				
4.	$-0.25y - 0.25z + w = 25$ Solve the Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ using Liebmann's method for the square mesh of the following figure with boundary values displayed. $0 500 1000 500 0$ $1000 u_1 u_2 u_3 1000$ $2000 u_4 u_5 u_6 2000$ $1000 u_7 u_8 u_9 1000$	[10]	CO5				

Name: Enrollment No:

5.	Solve the boundary value problem $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, under the condition $u(0,t) = u(1,t) = 0$ and $u(x,0) = \sin \pi x$, $0 \le x \le 1$, using Schmidt method (Take $h = 0.2, \alpha = \frac{1}{2}$) OR Consider a laterally insulated metal bar of length 1 and such that $c^2 = 1$ in the heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$. Suppose that the ends of the bar are kept at temperature $u = 0^{\circ}C$ and the temperature in the bar at some instant call it $t = 0$ is $f(x) = \sin \pi x$. Applying the Crank-Nicolson method with $h = 0.2$ and $r = 1$, find the temperature $u(x, t)$ in the bar for $0 \le t \le 0.2$.	[10]	CO6			
	SECTION C (Q1 is compulsory and has internal choices)					
1	Use the fourth-order Runge-Kutta method to solve the following system of ordinary differential equations, assuming $x_0 = 0$, $y_0 = 4$, $z_0 = 6$. Solve the system at $x = 2$ with a step size of 0.5. $\frac{dy}{dx} = -0.5y$ $\frac{dz}{dx} = 4 - 0.3z - 0.1y$ OR Use the Euler'ss method to solve the following system of ordinary differential equations, assuming $x_0 = 0$, $y_0 = 4$, $z_0 = 6$. Solve the system at $x = 2$ with a step size of 0.5. $\frac{dy}{dx} = -0.5y$ $\frac{dy}{dx} = -0.5y$ $\frac{dz}{dx} = 4 - 0.3z - 0.1y$	[20]	CO4			