Name: Enrolment No:		
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, January 2021		
Course: Engineering Physics Program: B. Tech. : SOCS (Batches 1-20) Course Code: PHYS 1023	Semester: I Time: 03 Hrs Max. Marks: 100	
SECTION A 1. All questions are compulsory. Each Question carry 5 Marks 2. Instruction: Complete the statement / Select the correct answer(s)/ Write short answers		
S. No.	Question	CO
Q 1	Express the point $\mathrm{P}(-4,6,3)$ in cylindrical coordinates (Enter values only)	CO2
Q2	The Optical power of 0.5 mW is initially launched into an optical fiber. The power level is found to be 0.0199 mW after 4 km . The attenuation coefficient in this fiber will be \qquad $\mathrm{dB} / \mathrm{km}$ (Enter value only)	C01
Q3	Wite the statement for Faraday's law.	CO3
Q4	A "Qubit" can be Implemented by [choose all that apply] a) Photonisation of photon b) polarization of photon c) The energy level of the neutron d) The Energy level of an atom e) rotation of an electron f) spin orientation of an electron	$\mathrm{CO5}$
Q5	Select all that satisfy the properties of wave function ψ a) The wave function must be single and finite valued b) The wave function must be discontinuous c) The wave function must be continuous d) The wave function must be differentiable e) The wave function must be infinite	CO4
Q6	Explain pair production.	$\mathrm{CO4}$
SECTION B 1. All questions are compulsory. Each question carry 10 marks 2. Instruction: Write short / brief notes		
Q 7	Explain the construction of a Ruby laser with a neat diagram. By using the energy level diagram, explain the working of the Ruby laser.	CO1
8	Derive the boundary conditions for electric field intensity and electric flux density for the dielectric - dielectric interface.	CO2
Q 9	An infinitely long conductor is bent into an L shape as shown in Figure below. If a direct current of 5 A flows in the conductor, find the magnetic field intensity at (a) $(2,2,0),(b)(0,-2,0)$, and (c) $(0,0,2)$. Take the origin at the bend.	CO3

Q 10	Prove that particle group velocity is equal to the particle velocity	CO4
Q 11	(a) Suppose that $\left\{\left\|u_{1}\right\rangle,\left\|u_{2}\right\rangle,\left\|u_{3}\right\rangle\right\}$ is an orthogonal basis for a three dimensional Hilbert's space. A system is in the state given by $\|\Psi\rangle=\frac{1}{\sqrt{5}}\left\|u_{1}\right\rangle-i \sqrt{\frac{7}{15}}\left\|u_{2}\right\rangle+\frac{1}{\sqrt{3}}\left\|u_{3}\right\rangle$ Determine if this state is normalized [4 marks] (b) Distinguish Classical computers and Quantum Computers. [Minimum 6] [6 marks]	$\mathrm{CO5}$
	Each Question carries 20 Marks. Instruction: Write long answers	
Q12	(a) Derive the time-independent Schrodinger wave equation. [10 marks] (b) Calculate the maximum percentage change in wavelength due to Compton scattering for incident photons of wavelength $1 \AA$ and $10 \AA$ [10 marks] OR (c) Show that the wave function of a particle trapped into a one-dimension box of length L is $\Psi_{n}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right)$, where $\mathrm{n}=1,2,3, \ldots$. [10 marks] (d) A metallic surface, when illuminated with light of wavelength λ_{1}, emits electrons with energies upto a maximum value E_{1}, and when illuminated with light of wavelength λ_{2}, where $\lambda_{2}<\lambda_{1}$, it emits electrons with energies upto a maximum value E_{2}. Prove that Planck's constant h and the work function φ of the metal are given by $h=\frac{\left(E_{2}-E_{1}\right) \lambda_{1} \lambda_{2}}{C\left(\lambda_{1}-\lambda_{2}\right)} \text { and } \varphi=\frac{E_{2} \lambda_{2}-E_{1} \lambda_{1}}{\left(\lambda_{1}-\lambda_{2}\right)} \quad[10 \text { marks }]$	CO 4

Values of constants:

Constant	Standard Values
Planck's Constant (h)	$6.63 \times 10^{-34} \mathrm{Joule}-\mathrm{sec}$
Permittivity of free space $\left(\varepsilon_{0}\right)$	$8.854 \times 10^{-12} \mathrm{Farad} / \mathrm{meter}$
Velocity of Light (c)	$3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$
Boltzmann constant $\left(k_{B}\right)$	$1.38 \times 10^{-23} \mathrm{JK}$
Rest mass of an Electron	$9.11 \times 10^{-31} \mathrm{Kg}$
Charge of electron	$1.6 \times 10^{-19} \mathrm{C}$

