Name:

Enrolment No:

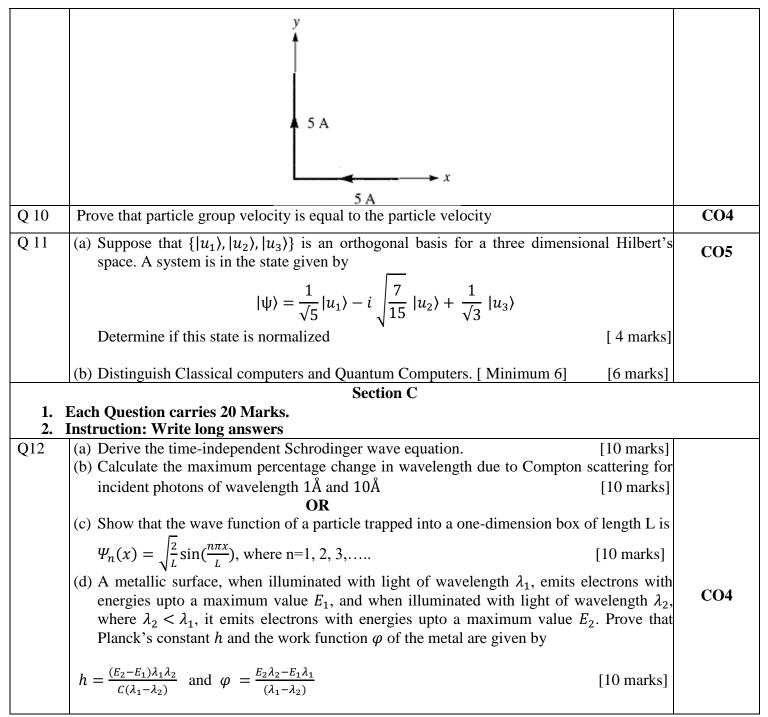
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES **Online End Semester Examination, January 2021**

Course: Engineering Physics Program: B. Tech. : CLIPR **Course Code: PHYS 1023**

SECTION A

1. All questions are compulsory. Each Question carry 5 Marks

2. Instruction: Complete the statement / Select the correct answer(s)/ Write short answers


S. No.	Question	CO
Q 1	Express the point $P(-4, 6, 3)$ in cylindrical coordinates (Enter values only)	CO2
Q2	The Optical power of 0.5 mW is initially launched into an optical fiber. The power level is found to be 0.0199 mW after 4 km. The attenuation coefficient in this fiber will be dB/km (Enter value only)	C01
3	Wite the statement for Faraday's law.	CO3
Q4	 A "Qubit" can be Implemented by [choose all that apply] a) Photonisation of photon b) polarization of photon c) The energy level of the neutron d) The Energy level of an atom e) rotation of an electron f) spin orientation of an electron 	CO5
Q5	 Select all that satisfy the properties of wave function ψ a) The wave function must be single and finite valued b) The wave function must be discontinuous c) The wave function must be continuous d) The wave function must be differentiable e) The wave function must be infinite 	CO4
Q6	Explain pair production.	CO4
	SECTION B	
1.	All questions are compulsory. Each question carry 10 marks	
2.	Instruction: Write short / brief notes	
Q 7	Explain the construction of a Ruby laser with a neat diagram. By using the energy level diagram, explain the working of the Ruby laser.	CO1
8	Derive the boundary conditions for electric field intensity and electric flux density for the dielectric – dielectric interface.	CO2
Q 9	An infinitely long conductor is bent into an L shape as shown in Figure below. If a direct current of 5A flows in the conductor, find the magnetic field intensity at	CO3

(a) (2, 2, 0), (b) (0, -2, 0), and (c) (0, 0, 2). Take the origin at the bend.

Semester: I Time: 03 Hrs Max. Marks: 100

UNIVERSITY WITH A PURPOSE

Values of constants:

Constant	Standard Values
Planck's Constant (<i>h</i>)	6.63 x 10 ⁻³⁴ Joule – sec
Permittivity of free space (ε_0)	8.854 x 10 ⁻¹² Farad/meter
Velocity of Light (<i>c</i>)	3 x 10 ⁸ m/sec
Boltzmann constant (k_B)	$1.38 \times 10^{-23} JK^{-1}$
Rest mass of an Electron	$9.11 x 10^{-31} Kg$
Charge of electron	$1.6x10^{-19} C$